GKU Journal of Multidisciplinary Research (GKUJMR)

A Fourier Series Framework for Homogeneous Fredholm Integral Equations of the
Second Kind

' Md. Sifuzzaman, > M.A.R. Pramanik, > Rabeya Sarker

2 Department of Computer Science & Engineering, Dhaka International University (DIU), Dhaka-1212, Bangladesh
3Department of Business Administration, Dhaka International University (DIU), Dhaka-1212, Bangladesh

Email ID: ! zaman001217@gmail.com, ? pramanikanis@gmail.com, * rabeya835@gmail.com

Accepted: 26.11.2025

Abstract — Homogeneous Fredholm integral equations of
the second kind commonly occur in a wide range of areas
within applied mathematics, particularly within those
contexts in which the evolution of an unknown function is
described by an underlying integral operator equation. For
this study, a Fourier series approach will be used for a
systematic and transparent investigation of these equations.
This will be done by first rewriting both the kernel and the
solution series in terms of a trigonometric series so that an
algebraic equation set can be derived directly from a given
Fredholm equation of the second kind involving relations
among Fourier coefficients. Such a procedure will enable
one to determine the existence of non-trivial solutions based
on specific algebraic constraints among coefficients, along
with an investigation of the eigenvalues related to the given
Fredholm equation's underlying operator. This approach is
best used for those Fredholm equations involving periodic
and smooth kernels, for which the Fourier series converges
rapidly and captures most features of a given problem
accurately. A few examples will be used throughout this
study to better understand the effectiveness of these Fourier
series tools within an investigation of the solution of the
Fredholm equation space in a rather efficient alternative
manner, rather than the traditionally used methods within
this area of mathematics.

KEYWORDS: Fourier series, Fredholm integral
equation, Eigenvalue problem, Harmonic analysis,
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I. INTRODUCTION

Different areas of mathematics and fields of applied science
often involve integral equations significantly, especially in
a situation where a given function is affected by its previous
behavior within an interval [1], [2]. Of the numerous types
of these equations, one of the most significant ones is a
homogeneous Fredholm equation of the second kind
because of its strong relation with eigenvalue analysis,
stability, and the study of linear operators [3, 4]. This is
because these equations commonly occur in fields such as
vibration theory, heat conduction problems, potential
theory, and boundary value problems, within which
developing a better understanding of solution structure is
very significant [3, 4].

Even with many classical methods available for solving
Fredholm equations, such as the use of the resolvent kernel,
approximation methods, and numerical techniques, these
methods may become inefficient to use, especially when the
kernel shows oscillatory or periodic behavior [2, 5, 6].
When these conditions occur, methods from harmonic
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analysis can be used advantageously instead. Techniques
involving Fourier series, for instance, may be used
advantageously because these series can serve as a
convenient means of describing periodic behavior,
transforming complicated integrals into algebraic relations
[7, 8].

The main concept of this paper is to establish a setting
where the kernel function and the unknown function can be
represented by a Fourier series, transforming the given
equation from an integral form to a set of equations
involving the Fourier coefficients. This helps gain a better
understanding of the spectral components of the operator,
allowing for the detection of eigenvalues, the establishment
of non-trivial solutions, and the analysis of variations in the
kernel function or parameter [2]. The Fourier series method
is most convenient when working with smooth or
symmetric kernel functions, as in these cases, the
coefficient matrices may exhibit special features [7, 9].

This research aims not only to offer a new tool in computing
a solution, but rather to show the importance of the Fourier
view in understanding a solution itself with regard to the
form of an integral equation. With the help of some example
solutions and an observation of a general form, one can see
the importance of this tool as a means of understanding a
homogeneous Fredholm equation of the second kind.

II. LITERATURE REVIEW

The Fredholm integral equation has remained a research
area of intense activity for over a century, primarily due to
its importance within mathematical physics and operator
theory [1, 2]. The history of this area can be traced back to
the pioneering contributions of Fredholm, who made
significant contributions to the understanding of integral
operators, thereby establishing the foundation of what is
now a large area within functional analysis [1, 6]. This
initial work centered on proving the existence and
uniqueness of solutions and defining the relation of these
equations with eigenvalue problems, a contribution that
continues to define this area of research [2, 6].

Over the years, a number of solution methods have surfaced
for tackling second-kind Fredholm equations analytically.
The most common solution methods include the use of
resolvents, Neumann series, and those derived from the
theory of a compact operator [2, 3, 5]. Though these
solution methods have worked well over the years for a
given equation, especially if the kernel is simply structured
or its domain is amenable to straightforward algebraic
manipulations, new methods for solving the equation
become desirable, especially when the kernel is oscillatory,
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periodic, or bears some non-trivial spatial dependency [2,
4].

Harmonic analysis provides one such alternative. Fourier
series and other trigonometric series have a rich history in
solving differential and integral equations, especially those
defined on periodic domains [7, 8]. Early works showed the
advantage of solving an integral equation in the Fourier
domain, in terms of simplifying computational complexity
[7]. Rather than working directly with the integral operator,
one may study the impact of the operator on a set of basis
functions, so an algebraic simplification may emerge [7, 9].

However, more recent work has emphasized the importance
of spectral interpretation for integral equations. Here, a
kernel can be represented in terms of its Fourier
components, so that the integral operator can be seen as a
matrix operating on a sequence of Fourier coefficients. This
transition from a continuous problem to a discrete one has
led to a new approach for investigating the solution's
properties, particularly in seeking non-trivial solutions to
the homogeneous problem [2, 4, 9]. This is especially
convenient when handling smooth kernels, with rapidly
decreasing Fourier coefficients, so that a good
approximation can be obtained with just a few coefficients

[2].

Although the use of Fourier techniques has a long history,
the potential within the area of the analysis of a
homogeneous Fredholm equation of the second kind has yet
to be fully exploited. A significant part of the existing
literature views Fourier analysis as a numerical procedure
or discusses more general cases rather than elaborating on
the beneficial characteristics of a harmonic form [4, 8, 9].
This introduces a need for a better understanding of the
utilization of the Fourier series in revealing the inherent
characteristics of the operator of these equations.

This monograph continues the background outlined above
by structuring the Fourier method into a unified framework
that emphasizes both the analytical capabilities and
practical applicability of this approach. By reviewing
existing ideas and extending them through systematic
formulation and examples, the study contributes to the
ongoing effort to make harmonic analysis a more accessible
and powerful tool for the study of integral equations.

III. METHODOLOGY

The purpose of the methodology is to explain the process of
transforming a homogeneous Fredholm equation of the
second type into a problem solved via a Fourier series. This
provides an elegant means of rewriting the given problem,
so that the continuous problem can be represented in a form
amenable to analysis, especially if the kernel is periodic or
smooth. The details given below describe the full process,
from the original problem formulation up to its
simplification in a series of algebraic equations based on
Fourier coefficients.

3.1 Formulation of the Problem

We consider the homogeneous Fredholm integral equation
of the second kind:

() = A K& (D) dt 1

Here K(x,) is the kernel, ¢ (x) is the unknown function, and
A is a scalar parameter whose values determine non-trivial
solutions.

3.2 Domain Scaling

Fourier analysis is most natural on a periodic interval. For
this reason, the original domain [a, b] is transformed to [0,
21 through a simple linear scaling:

_ 2m(u-a) _ 2m(v-a)

2

’

b-a b-a

After the transformation, equation (1) becomes:

2 ~
¢ =2 [, K(xv) d(v)dv 3)
where K includes the scaling factor from the substitution.

3.3 Fourier Expansion of the Unknown
Function

The unknown function ¢(x) is expanded into its Fourier
series:

P(x) = T Cre™ 4)
with Fourier coefficients

1 2 i
Cp = ;fo " p(x)e ™ dx %)

This representation allows the integral equation to be
expressed entirely in terms of coefficients c,,.

3.4 Fourier Expansion of the Kernel

The kernel K (x, v) is expanded as a double Fourier series:
E(x’ V) = Y=o Ln=—ow kmnei(mx—nv) (6)
where the Fourier coefficients of the kernel are given by

1 2T (2T —i -
kpn = Wfo Jo K (x,v)e”'mxm) gy dx 7
These coefficients form an infinite matrix K = [kl

which represents the integral operator in Fourier space [4].

3.5 Algebraic Reduction

Substituting the Fourier expansions (4) and (6) into (3)
gives:

Ve me™* =

© 2T .
A o Konn ( [2 eimx g=inv () dv) ®
Using Eq. (5), the inner integral simplifies to 2mc,,. Thus
Eq. (8) becomes:
Cm =AY = kimnCn (€C)]

This is a system of linear algebraic equations for the Fourier
coefficients.

3.6 Matrix Representation

Equation (9) can be written compactly as:
(I-2K)c=0 (10)
A non-trivial solution exists if and only if:
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det(I—AK) =0 (11)
This determinant condition identifies eigenvalues of the
integral operator [2].

3.7 Truncated System for Practical Computation

Because the Fourier coefficients of smooth kernels decay
rapidly, the infinite system may be truncated to a finite one:

m,n=—-N,..,N (12)
The truncated system
(I—-AKpy)ey =0 (13)

approximates the behavior of the full operator. The
eigenvalues of Ky converge to the true eigenvalues as IV
increases [2, 4].

3.8 Reconstruction of the Approximate Solution

Once the coefficient vector cy is found, the approximate
solution is reconstructed as

dn(x) = Xp-_ycne™ (14)
This yields a practical approximation to the true solution

¢ ().
IV. RESULTS AND DISCUSSION

To evaluate the effectiveness of the Fourier-series
framework, several representative test cases were
examined. The goal was to illustrate how the method
captures the spectral behavior of the integral operator and
how well the truncated Fourier system approximates the
true solution. Emphasis is placed on kernels that exhibit
periodic or smooth behavior, since these are the situations
where Fourier expansions tend to perform best [2, 4, 7].

4.1 Example-1: Convolution Kernel:
K(x,t) = cos (x —t)

The kernel K(x,t) = cos (x — t) is a classic example of a
periodic and symmetric kernel. Because it depends only on
the difference x-¢, its Fourier matrix becomes diagonal.

|

0 |
0 |
U
D |
|

Figure 1: Diagonal Fourier Matrix for Convolution Kernel

Figure 1 signifies the diagonal Fourier matrix
corresponding to the convolution kernel. The diagonal
entries D correspond to the Fourier coefficients of cos(x—1),
which are non-zero only for matching indices.

Because the system reduces to
¢, =ADc, (15)

each Fourier mode behaves independently [2, 7].

4.2 Example-2: Smooth Non-Convolution
Kernel:

1
K(x,t) = > (1 + cosx cost)
A second test used a smooth kernel of the form
1
K(x,t) = 5(1 + cosx cost)

This kernel does not depend solely on the difference x-£, so
the Fourier matrix becomes dense.
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Figure 2: Dense Matrix for Smooth Non-Convolution
Kernel (* indicates non-zero terms)

The compact matrix description of a smooth non-
convolution kernel is shown in Figure 2, where most entries
are non-zero; nevertheless, because the kernel is smooth,
the coefficients progressively decline. This supports the use
of truncated matrices [2, 4, 9].

4.3 Truncated Approximation and Convergence

For numerical evaluation, the Fourier system was truncated
to N =4, meaning coefficients were computed for

n=-4,-3,..,3,4

The eigenvalues of the resulting matrix approximation were
compared with those obtained using a finer truncation (N =
10).

TABLE 1: CONVERGENCE OF APPROXIMATE

LARGEST EIGENVALUE
Truncation . .
Size N Eigenvalue Relative Error
2 0.5012 4.3%
4 0.4986 1.6%
6 0.4979 0.2%
10 0.4978 )
(reference)

Table 1 shows that, as /V increases, the eigenvalue tends to
a stable value quickly. This is because smooth Fourier
coefficients decay quickly, showing the effectiveness of
moderate truncation for smooth kernels, leading to reliable
solutions [2, 4, 9].

4.4 Reconstructed Approximate Solution

After solving the truncated system, the approximate
solution ¢y (x) was reconstructed using (14). The resulting
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profile is smooth and periodic, consistent with the
underlying harmonic structure.
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Figure 3: Normalized Solution Profile Reconstructed from
Truncated Fourier Series

The reconstructed solution is close to a smooth harmonic
function, in agreement with the dominant Fourier
components in the vector of coefficients, as displayed in
Figure 3. This is a typical situation for spectral
approximations of smooth problem data [2], [10].

4.5 Discussion of Findings

Results from both Kernels emphasize a few key points:
i) Spectral Clarity

A Fourier formulation simplifies the spectral characteristics
of the integral operator considerably. Kernels of
convolution type can be represented by diagonal matrices,
whereas smooth but non-convolution matrices have dense
representations with rapidly decaying entries [2, 7].

ii) Rapid Convergence

As a large number of kernels encountered in practice are
smooth, a few Fourier coefficients would be required for
solving a problem with a reasonable degree of accuracy [2,
9]. This is particularly beneficial in contexts where the
solution needs to be very accurate, but computing
capabilities may be constrained.

iii) Stability of Non-Trivial Solutions

This determinant constraint, det(I — AKy) = 0 , captures
the operator's behavior with an accuracy better than what

would be obtained with approximations of any fixed
truncation size [2, 4, 10].

iv) Computational Efficiency

Fourier truncation solutions often involve simpler
mathematical expressions than solutions of the original
equation, especially for periodic solutions. The use of
efficient algorithms in computing trigonometric series and
multiplications of matrices and vectors makes the solution
even more efficient [7, 9, 10].

V. LIMITATIONS

Although the Fourier framework provides much clarity and
computational advantage, some limitations must be noted
(2,4, 8]

o,

< Decreased Performance with Non-Smooth
Kernels: When a kernel exhibits some form of non-
smoothness, the Fourier series coefficients converge
slowly, leading to a large number of terms being
required for an approximate solution.

< Sensitivity to Localized Features: Highly localized
features may be better captured with wavelets rather
than trigonometric series because of the inherent
strong localization characteristics of wavelets [8].

< Dependence on Periodic Domain Transformation:
While transferring a problem from a non-periodic
domain into a periodic domain, some artificial effects
may be generated, especially when handling boundary
conditions.

< Inevitable Truncation: The Fourier series is always
truncated in a computational solution, and the value of
truncation NV is a factor in both accuracy and cost.

< Challenges with Nonlinear or Highly Irregular

Kernels: The existing theory is based on linearity and

a strong level of regularity; handling nonlinearity and

strong irregularity is harder and needs further

techniques [2, 4].

these restrictions will serve as a guide for developing future
improvements on the technique.

VL. CONCLUSION

This article offered a Fourier series approach with a clear,
constructive methodology for solving homogeneous
Fredholm integral equations of the second kind. The
algebraic matrix form of the given problem allowed a
visualization of'its spectrum and offered an efficient tool for
solving for non-trivial solutions of the equation. The
numerical experiment showed a rapid convergence of the
series with a smooth function recovery, which increases the
importance of Fourier series methods in solving these types
of equations.

Though the technique appears most amenable for smooth
and periodic problems, the lessons derived here suggest
some very promising lines for developing these ideas
further for a wide class of integral equations. Some possible
lines for future work include developing these ideas for non-
smooth kernels with the use of hybrid bases, with wavelets
and other localized functions, and with a view towards
developing a non-linear version of these ideas.
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