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Abstract – Homogeneous Fredholm integral equations of 
the second kind commonly occur in a wide range of areas 
within applied mathematics, particularly within those 
contexts in which the evolution of an unknown function is 
described by an underlying integral operator equation. For 
this study, a Fourier series approach will be used for a 
systematic and transparent investigation of these equations. 
This will be done by first rewriting both the kernel and the 
solution series in terms of a trigonometric series so that an 
algebraic equation set can be derived directly from a given 
Fredholm equation of the second kind involving relations 
among Fourier coefficients. Such a procedure will enable 
one to determine the existence of non-trivial solutions based 
on specific algebraic constraints among coefficients, along 
with an investigation of the eigenvalues related to the given 
Fredholm equation's underlying operator. This approach is 
best used for those Fredholm equations involving periodic 
and smooth kernels, for which the Fourier series converges 
rapidly and captures most features of a given problem 
accurately. A few examples will be used throughout this 
study to better understand the effectiveness of these Fourier 
series tools within an investigation of the solution of the 
Fredholm equation space in a rather efficient alternative 
manner, rather than the traditionally used methods within 
this area of mathematics.  
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I. INTRODUCTION 

Different areas of mathematics and fields of applied science 
often involve integral equations significantly, especially in 
a situation where a given function is affected by its previous 
behavior within an interval [1], [2]. Of the numerous types 
of these equations, one of the most significant ones is a 
homogeneous Fredholm equation of the second kind 
because of its strong relation with eigenvalue analysis, 
stability, and the study of linear operators [3, 4]. This is 
because these equations commonly occur in fields such as 
vibration theory, heat conduction problems, potential 
theory, and boundary value problems, within which 
developing a better understanding of solution structure is 
very significant [3, 4]. 

Even with many classical methods available for solving 
Fredholm equations, such as the use of the resolvent kernel, 
approximation methods, and numerical techniques, these 
methods may become inefficient to use, especially when the 
kernel shows oscillatory or periodic behavior [2, 5, 6]. 
When these conditions occur, methods from harmonic 

analysis can be used advantageously instead. Techniques 
involving Fourier series, for instance, may be used 
advantageously because these series can serve as a 
convenient means of describing periodic behavior, 
transforming complicated integrals into algebraic relations 
[7, 8]. 

The main concept of this paper is to establish a setting 
where the kernel function and the unknown function can be 
represented by a Fourier series, transforming the given 
equation from an integral form to a set of equations 
involving the Fourier coefficients. This helps gain a better 
understanding of the spectral components of the operator, 
allowing for the detection of eigenvalues, the establishment 
of non-trivial solutions, and the analysis of variations in the 
kernel function or parameter [2]. The Fourier series method 
is most convenient when working with smooth or 
symmetric kernel functions, as in these cases, the 
coefficient matrices may exhibit special features [7, 9]. 

This research aims not only to offer a new tool in computing 
a solution, but rather to show the importance of the Fourier 
view in understanding a solution itself with regard to the 
form of an integral equation. With the help of some example 
solutions and an observation of a general form, one can see 
the importance of this tool as a means of understanding a 
homogeneous Fredholm equation of the second kind. 

II. LITERATURE REVIEW 

The Fredholm integral equation has remained a research 
area of intense activity for over a century, primarily due to 
its importance within mathematical physics and operator 
theory [1, 2]. The history of this area can be traced back to 
the pioneering contributions of Fredholm, who made 
significant contributions to the understanding of integral 
operators, thereby establishing the foundation of what is 
now a large area within functional analysis [1, 6]. This 
initial work centered on proving the existence and 
uniqueness of solutions and defining the relation of these 
equations with eigenvalue problems, a contribution that 
continues to define this area of research [2, 6]. 

Over the years, a number of solution methods have surfaced 
for tackling second-kind Fredholm equations analytically. 
The most common solution methods include the use of 
resolvents, Neumann series, and those derived from the 
theory of a compact operator [2, 3, 5]. Though these 
solution methods have worked well over the years for a 
given equation, especially if the kernel is simply structured 
or its domain is amenable to straightforward algebraic 
manipulations, new methods for solving the equation 
become desirable, especially when the kernel is oscillatory, 
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periodic, or bears some non-trivial spatial dependency [2, 
4]. 

Harmonic analysis provides one such alternative. Fourier 
series and other trigonometric series have a rich history in 
solving differential and integral equations, especially those 
defined on periodic domains [7, 8]. Early works showed the 
advantage of solving an integral equation in the Fourier 
domain, in terms of simplifying computational complexity 
[7]. Rather than working directly with the integral operator, 
one may study the impact of the operator on a set of basis 
functions, so an algebraic simplification may emerge [7, 9]. 

However, more recent work has emphasized the importance 
of spectral interpretation for integral equations. Here, a 
kernel can be represented in terms of its Fourier 
components, so that the integral operator can be seen as a 
matrix operating on a sequence of Fourier coefficients. This 
transition from a continuous problem to a discrete one has 
led to a new approach for investigating the solution's 
properties, particularly in seeking non-trivial solutions to 
the homogeneous problem [2, 4, 9]. This is especially 
convenient when handling smooth kernels, with rapidly 
decreasing Fourier coefficients, so that a good 
approximation can be obtained with just a few coefficients 
[2]. 

Although the use of Fourier techniques has a long history, 
the potential within the area of the analysis of a 
homogeneous Fredholm equation of the second kind has yet 
to be fully exploited. A significant part of the existing 
literature views Fourier analysis as a numerical procedure 
or discusses more general cases rather than elaborating on 
the beneficial characteristics of a harmonic form [4, 8, 9]. 
This introduces a need for a better understanding of the 
utilization of the Fourier series in revealing the inherent 
characteristics of the operator of these equations. 

This monograph continues the background outlined above 
by structuring the Fourier method into a unified framework 
that emphasizes both the analytical capabilities and 
practical applicability of this approach. By reviewing 
existing ideas and extending them through systematic 
formulation and examples, the study contributes to the 
ongoing effort to make harmonic analysis a more accessible 
and powerful tool for the study of integral equations. 

III. METHODOLOGY 

The purpose of the methodology is to explain the process of 
transforming a homogeneous Fredholm equation of the 
second type into a problem solved via a Fourier series. This 
provides an elegant means of rewriting the given problem, 
so that the continuous problem can be represented in a form 
amenable to analysis, especially if the kernel is periodic or 
smooth. The details given below describe the full process, 
from the original problem formulation up to its 
simplification in a series of algebraic equations based on 
Fourier coefficients. 

3.1 Formulation of the Problem 

We consider the homogeneous Fredholm integral equation 
of the second kind: 

ϕ(x)  =  λ ∫  K(x, t) ϕ(t) dt   (1) 

Here K(x,t) is the kernel, ϕ(x) is the unknown function, and 
λ is a scalar parameter whose values determine non-trivial 
solutions. 

3.2 Domain Scaling 

Fourier analysis is most natural on a periodic interval. For 
this reason, the original domain [a, b] is transformed to [0, 
2π] through a simple linear scaling: 

𝑥 =
ଶ஠(୳ିୟ)

௕ି௔
,   𝑡 =

𝟐𝛑(𝐯ି𝐚)

௕ି௔
    (2) 

After the transformation, equation (1) becomes: 

𝜙(𝑥) = 𝜆 ∫ 𝑲෩(x, v) ϕ(v)dv
ଶగ

଴
   (3) 

where 𝑲෩  includes the scaling factor from the substitution. 

3.3 Fourier Expansion of the Unknown 
Function 

The unknown function ϕ(x) is expanded into its Fourier 
series: 

𝜙(𝑥) = ∑ 𝑐௡𝑒௜௡௫ஶ
𝒏ୀିஶ     (4) 

with Fourier coefficients  

𝑐௡ =
ଵ

ଶగ
∫ 𝜙(𝑥)𝑒ି௜௡௫ଶగ

଴
𝑑𝑥    (5) 

This representation allows the integral equation to be 
expressed entirely in terms of coefficients 𝑐௡. 

3.4 Fourier Expansion of the Kernel 

The kernel 𝐾෩(𝑥, 𝑣) is expanded as a double Fourier series: 

𝐾෩(𝑥, 𝑣) = ∑ ∑ 𝑘௠௡𝑒௜(௠௫ି௡௩)ஶ
௡ୀିஶ

ஶ
௠ୀିஶ   (6) 

where the Fourier coefficients of the kernel are given by 

𝑘௠௡ =
ଵ

(ଶగ)మ ∫ ∫ 𝐾 ෪ଶగ

଴
(𝑥, 𝑣)𝑒ି௜(௠௫ି௡௩)ଶగ

଴
𝑑𝑣 𝑑𝑥 (7) 

These coefficients form an infinite matrix 𝐾 = [𝑘௠௡], 
which represents the integral operator in Fourier space [4]. 

3.5 Algebraic Reduction 

Substituting the Fourier expansions (4) and (6) into (3) 
gives: 

∑ 𝑚𝑒௜௠௫ஶ
𝒎ୀିஶ =

𝜆 ∑ 𝑘௠௡ ቀ∫ 𝑒௜௠௫ 𝑒ି௜௡௩ϕ(𝑣)𝑑𝑣
ଶగ

଴
ቁஶ

𝒎,𝒏ୀିஶ   (8) 

Using Eq. (5), the inner integral simplifies to 2𝜋𝑐௡. Thus 
Eq. (8) becomes: 

𝑐௠ = 𝜆 ∑ 𝑘௠௡𝑐௡
ஶ
௡ୀିஶ     (9) 

This is a system of linear algebraic equations for the Fourier 
coefficients. 

3.6 Matrix Representation 

Equation (9) can be written compactly as: 
(𝑰 − 𝜆𝑲)𝒄 = 𝟎     (10) 
A non-trivial solution exists if and only if:     
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𝑑𝑒𝑡(𝑰 − 𝜆𝑲) = 𝟎     (11) 
This determinant condition identifies eigenvalues of the 
integral operator [2]. 

3.7 Truncated System for Practical Computation 

Because the Fourier coefficients of smooth kernels decay 
rapidly, the infinite system may be truncated to a finite one: 
𝑚, 𝑛 = −𝑁, … , 𝑁     (12) 
The truncated system 
(𝑰 − 𝜆𝑲𝑵)𝒄𝑵 = 𝟎    (13) 
approximates the behavior of the full operator. The 
eigenvalues of 𝑲𝑵 converge to the true eigenvalues as N 
increases [2, 4].  

3.8 Reconstruction of the Approximate Solution 

Once the coefficient vector 𝒄𝑵 is found, the approximate 
solution is reconstructed as 

𝜙ே(𝑥) = ∑ 𝑐௡𝑒௜௡௫𝑵
𝒏ୀି𝑵     (14) 

This yields a practical approximation to the true solution 
𝜙(𝑥). 

IV. RESULTS AND DISCUSSION 

To evaluate the effectiveness of the Fourier-series 
framework, several representative test cases were 
examined. The goal was to illustrate how the method 
captures the spectral behavior of the integral operator and 
how well the truncated Fourier system approximates the 
true solution. Emphasis is placed on kernels that exhibit 
periodic or smooth behavior, since these are the situations 
where Fourier expansions tend to perform best [2, 4, 7]. 

4.1 Example-1:  Convolution Kernel: 
𝑲(𝑥, 𝑡) = cos (𝑥 − 𝑡) 

The kernel  𝑲(𝑥, 𝑡) = cos (𝑥 − 𝑡) is a classic example of a 
periodic and symmetric kernel. Because it depends only on 
the difference x-t, its Fourier matrix becomes diagonal. 

            n → 
      ┌────────────┐ 

 m  │   D     0     0     0       │ 

 ↓   │   0     D     0     0       │ 

      │   0     0     D     0       │ 

      │   0     0     0     D       │ 

      └────────────┘ 
Figure 1: Diagonal Fourier Matrix for Convolution Kernel 

Figure 1 signifies the diagonal Fourier matrix 
corresponding to the convolution kernel. The diagonal 
entries D correspond to the Fourier coefficients of cos(x−t), 
which are non-zero only for matching indices. 

Because the system reduces to 
𝒄௡ = 𝜆𝐷𝒄௡     (15) 

each Fourier mode behaves independently [2, 7]. 

4.2 Example-2: Smooth Non-Convolution 
Kernel: 

𝑲(𝑥, 𝑡) =
1

2
(1 + 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑡) 

A second test used a smooth kernel of the form 

𝑲(𝑥, 𝑡) =
1

2
(1 + 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑡) 

This kernel does not depend solely on the difference x-t, so 
the Fourier matrix becomes dense. 

            n → 
      ┌────────────┐ 

 m  │   *     *     *     *       │ 

 ↓   │   *     *     *     *       │ 

      │   *     *     *     *       │ 

      │   *     *     *     *       │ 

      └────────────┘ 
Figure 2: Dense Matrix for Smooth Non-Convolution 
Kernel (* indicates non-zero terms) 

The compact matrix description of a smooth non-
convolution kernel is shown in Figure 2, where most entries 
are non-zero; nevertheless, because the kernel is smooth, 
the coefficients progressively decline. This supports the use 
of truncated matrices [2, 4, 9]. 

4.3 Truncated Approximation and Convergence 

For numerical evaluation, the Fourier system was truncated 
to N = 4, meaning coefficients were computed for 

n = −4, −3, … ,3, 4. 

The eigenvalues of the resulting matrix approximation were 
compared with those obtained using a finer truncation (N = 
10). 

TABLE 1: CONVERGENCE OF APPROXIMATE 
LARGEST EIGENVALUE 

Truncation 
Size N 

Eigenvalue Relative Error 

2 0.5012 4.3% 
4 0.4986 1.6% 
6 0.4979 0.2% 

10 
0.4978 

(reference) 
- 

Table 1 shows that, as N increases, the eigenvalue tends to 
a stable value quickly. This is because smooth Fourier 
coefficients decay quickly, showing the effectiveness of 
moderate truncation for smooth kernels, leading to reliable 
solutions [2, 4, 9]. 

4.4 Reconstructed Approximate Solution 

After solving the truncated system, the approximate 
solution 𝜙ே(𝑥) was reconstructed using (14). The resulting 



GKU Journal of Multidisciplinary Research (GKUJMR) 

Page | 102  
 

profile is smooth and periodic, consistent with the 
underlying harmonic structure. 

     φ(x) 
      ↑ 

 1.0 |               *            

 0.8 |          *       *         

 0.6 |        *           *       

 0.4 |       *             *      

 0.2 |      *               *     

 0.0 |  ***                 ***   

 -0.2|      *               *     

 -0.4|       *             *      

 -0.6|        *           *       

 -0.8|          *       *         

 -1.0|               *            

        +----------------------→ x 

              -π   0    π 

Figure 3: Normalized Solution Profile Reconstructed from 
Truncated Fourier Series 

The reconstructed solution is close to a smooth harmonic 
function, in agreement with the dominant Fourier 
components in the vector of coefficients, as displayed in 
Figure 3. This is a typical situation for spectral 
approximations of smooth problem data [2], [10]. 

4.5 Discussion of Findings 
Results from both Kernels emphasize a few key points: 

i) Spectral Clarity 

A Fourier formulation simplifies the spectral characteristics 
of the integral operator considerably. Kernels of 
convolution type can be represented by diagonal matrices, 
whereas smooth but non-convolution matrices have dense 
representations with rapidly decaying entries [2, 7]. 

ii) Rapid Convergence 

As a large number of kernels encountered in practice are 
smooth, a few Fourier coefficients would be required for 
solving a problem with a reasonable degree of accuracy [2, 
9]. This is particularly beneficial in contexts where the 
solution needs to be very accurate, but computing 
capabilities may be constrained.  

iii) Stability of Non-Trivial Solutions 

This determinant constraint, 𝑑𝑒𝑡(𝑰 − 𝜆𝑲𝑵) = 𝟎  , captures 
the operator's behavior with an accuracy better than what 

would be obtained with approximations of any fixed 
truncation size [2, 4, 10]. 

iv) Computational Efficiency 

Fourier truncation solutions often involve simpler 
mathematical expressions than solutions of the original 
equation, especially for periodic solutions. The use of 
efficient algorithms in computing trigonometric series and 
multiplications of matrices and vectors makes the solution 
even more efficient [7, 9, 10]. 

V. LIMITATIONS 

Although the Fourier framework provides much clarity and 
computational advantage, some limitations must be noted 
[2, 4, 8]: 

 Decreased Performance with Non-Smooth 
Kernels: When a kernel exhibits some form of non-
smoothness, the Fourier series coefficients converge 
slowly, leading to a large number of terms being 
required for an approximate solution. 

 Sensitivity to Localized Features: Highly localized 
features may be better captured with wavelets rather 
than trigonometric series because of the inherent 
strong localization characteristics of wavelets [8]. 

 Dependence on Periodic Domain Transformation: 
While transferring a problem from a non-periodic 
domain into a periodic domain, some artificial effects 
may be generated, especially when handling boundary 
conditions. 

 Inevitable Truncation: The Fourier series is always 
truncated in a computational solution, and the value of 
truncation N is a factor in both accuracy and cost. 

 Challenges with Nonlinear or Highly Irregular 
Kernels: The existing theory is based on linearity and 
a strong level of regularity; handling nonlinearity and 
strong irregularity is harder and needs further 
techniques [2, 4]. 

these restrictions will serve as a guide for developing future 
improvements on the technique. 

VI. CONCLUSION 

This article offered a Fourier series approach with a clear, 
constructive methodology for solving homogeneous 
Fredholm integral equations of the second kind. The 
algebraic matrix form of the given problem allowed a 
visualization of its spectrum and offered an efficient tool for 
solving for non-trivial solutions of the equation. The 
numerical experiment showed a rapid convergence of the 
series with a smooth function recovery, which increases the 
importance of Fourier series methods in solving these types 
of equations. 

Though the technique appears most amenable for smooth 
and periodic problems, the lessons derived here suggest 
some very promising lines for developing these ideas 
further for a wide class of integral equations. Some possible 
lines for future work include developing these ideas for non-
smooth kernels with the use of hybrid bases, with wavelets 
and other localized functions, and with a view towards 
developing a non-linear version of these ideas. 
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