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Abstract — Conditions in the environment, operational
costs, as well as product wastage make it essential to have
sustainable methods of managing inventories for perishable
commodities. The paper suggests an efficient inventory
management methodology. Carbon emissions' cost
considerations, learning about demands based on demands’
dependence on learning, as well as partial backlog based
on market variability related to consumer behavior, form
part of variability related to ‘hybrid uncertainty.’ The idea
assumes progression in demands as consumers learn about
their product (learning effect), considering their instability
related to market conditions. A particular product degrades
over time. The backlog level related to shortages is partially
fulfilled, depending on consumer behavior related to wait
time. To minimize the cost associated with inventory,
appropriate optimization strategies are employed. These
costs would encompass purchase costs, storage costs,
shortage costs, deterioration costs, and carbon emissions.
Decisions about inventories depend on learning behavior,
uncertainties, and sustainability laws, as results from
sensitivity analyses and numerical experiments have shown.
The results make it clear that learning and the costs of
emissions must be considered to come up with viable and
sustainable solutions. Decision-makers can learn from
these results to find a way to combine environmental and
financial success. The presented method helps to optimize
financial and sustainability goals simultaneously.

Keywords:  Inventory  Management, Deteriorating
Products,  Learning-dependent  Demand,  Partial
Backlogging, Hybrid Uncertainty.

I. INTRODUCTION

In current scenarios, managing inventories associated
with perishable products has become a difficult task for
producers and organizations across industries due to
increasing sustainability issues and changing consumer
behavior. Very perishable products, such as food products,
pharmaceutical products, and chemical products, have
shown utmost susceptibility to storage environment
conditions, and inefficient management decisions regarding
these inventories result in increased wastage and increased
costs. Organizations also come under intense pressure to cut
down their carbon emissions from manufacturing, storage,
and transport processes.

In classical models of inventory management, shortages
were assumed to be completely backlogged, sustainability
costs were neglected, and demands were assumed to be
perfectly predictable. In reality, shortages can be only
partially backlogged, while demands depend on learning
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behavior because demands from consumers keep increasing
as they learn about new products. Further, demands,
deterioration rates, and cost coefficients are all affected by
hybrid uncertainties.

To overcome these challenges, this research introduces a
resilient, sustainable inventory model that considers the
carbon cost of emissions, learning-type demand, partial
backlog, and hybrid uncertainty. Specifically, this study
seeks to provide managers with strategies to ensure profit
sustainability while being environmentally responsible to
ensure coordinated decisions regarding order quantities,
pricing structures, ordering intervals, and backlog.

Due to the recent trend of focusing on sustainable supply
chains, it has become essential for organizations to take into
account the cost of carbon emissions related to storage and
shipment, which hasn't been considered previously in
traditional models of inventory. Further, the area of
optimization under uncertainty hasn't received adequate
attention.

The presented research bridges such a gap by formulating a
robust framework for inventories related to depreciable
items to account for costs associated with carbon emissions,
learning effects, partial backlog behavior, and uncertainties
generated from stochastic as well as fuzzy sources. A
numerical case study testifies to how learning effects and
joint risks caused by sustainability policies and uncertain
sources have impacted optimal decisions regarding
inventories.

II. LITERATURE REVIEW

The inventory management of deteriorating items and
perishables has been a considerably explored research field,
mostly when there is uncertainty involved and when there
is partial backlogging. Some of the early contributions to
the field of deteriorating items and inventory management
of perishables came from the work of Goyal and Giri [1]
and Nahmias [2]. The research focused mainly on the
necessity of proper models of demand and deterioration.
The models were later advanced to consider fuzzy and
stochastic uncertainties. In this field, the work of
Jamkhaneh and Taleizadeh [3] introduced an EOQ model of
perishable items when there are stochastic demand and
partial backlogging.

The effect of demand dependence on inventory level and
price has been explored in various research articles. Lin &
Xie [4] presented an EOQ model involving deteriorating
items and trade credit when the price and inventory level are
dependent, and also the effect of inventory level and price
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sensitivity on the order quantity was explored by Roy &
Chaudhuri [5]. In the case of non-instantaneous
deterioration of items, various research articles presented
models involving a partial backlog of inventory levels.
Chaudhary et al. [6], and Khan et al. [7, 8] presented models
involving non-linear demand and a hybrid payment method.
Additionally, the combined effect of price decision and
advance payment in deteriorating inventory models was
explored in the research study of Mashud et al. [9].

Issues of sustainability and carbon emissions have been of
utmost significance in recent years. Works of Alamri et al.
[10] and Mishra et al. [11] introduced EOQ models and
sustainable inventory management practices incorporating
the costs of carbon emission, deterioration, and backorders,
respectively. Likewise, Pervin [12] introduced the concept
of sustainable inventory management, incorporating
controllable carbon emission levels in the context of
inventory management involving backorders. Additionally,
Negi and Singh [13] and Xu et al. [14] investigated the
applications of advanced hybrids and clouded fuzzy
methodologies. Sarker et al. [15] introduced models
involving instantaneously deteriorated items in the context
of multiple trade facilities inventory management involving
stock-dependent and price-dependent demands as well as
full backlog models. This work delves into the latest
applications of the models. In sum, the existing literature
reveals a gradual shift from the classical EOQ model and its
deterministic variants to hybrid models involving fuzzy and
stochastic components and sustainability considerations in
inventory models. The above literature encompasses the
theory and insights needed to develop environmentally
sustainable and financially optimized inventory models of
deteriorating items. These models substantively contribute
to understanding the behavior of inventory levels in various
inventory models. Table 1 gives a detailed overview of the
published studies with their main contributions to the field.

TABLE 1: RELATED RESEARCH STUDIES AND

THEIR CONTRIBUTIONS.
Autho | Carbo Demand Shortage/Bac Key
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Emissi ters/
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Cost s
Consid
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as [2] perishable assumptions onal
demand perishab
models ility
framewo
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Goyal No Classical Allows Hybrid
& Giri deteriorati shortages uncertai
[1] ng demand nty
(fuzzy +
stochasti
©)
Jamkh No Hybrid Partial
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& stochastic & time
Taleiz discount
adeh ing
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Autho | Carbo Demand Shortage/Bac Key
r(s) n- Pattern klogging Parame
Emissi ters/
on Feature
Cost S
Consid
ered
Mishra Yes Standard Yes Carbon-
et al. demand emission
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sustaina
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y
Sarker no Deteriorati Full Multiple
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Chaud ariable backlogging | r waiting
huri demand behavior
[18]
Khan No Variable Partial Non-
et al. demand backlogging | instantan
[7, 8] patterns eous
deteriora
tion;
hybrid
payment
schemes

2.2 Research Gap

In reality, very few models have attempted to combine
product degradation, HU, cost of carbon emissions, learning
dependent demand, and PB together in a single framework.
The separate research efforts have created a void in this
area. The paper bridges this void.

III. PROBLEM STATEMENT

The task of managing inventories for deteriorating products
in sustainable supply chains has become even more
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difficult. The competition faces tough environmental
regulations, market unpredictability, and changing
consumer behaviors. The traditional inventory models
considered the assumption of constant demand, ignored the
carbon costs of emissions, and approximated shortages. In
actual situations, systems encounter hybrid types of
uncertainty due to both stochastic variability and the
inaccuracy of information. The customer demands are
continuously increasing as consumers learn. It is not always
possible to partially backlog shortages. Models have not
been applied simultaneously to deterioration products,
learning rate-dependent demand, sustainability criteria, and
partial backlog. Hence, managers do not have access to an
ensemble methodology to deal effectively and sustainably
with inventories. The paper proposes a new robust
methodology combining carbon costs of emissions, learning
rate-dependent demands, and partial backlog. Fig. 1 shows
the interaction with the decision aspects, giving a clear
picture of their relationships within the model.

Decision Variable Interaction Chart.
Total Cost

T

Order Quantity (Q) Cycle(T) Price (p)

| | |

nventory Level — Demand “ Learning Effect

|

Carbon Emission

Cost
Fig. 1: Decision Variable Interaction Chart.

3.1 Research Objectives

1. Formulate a sustainable inventory management
framework that simultaneously considers item decay
rates, learning-based and sensitive-demand rates, carbon
emissions costs, and partial backordering.

2. Hybrid models of uncertainty entailing stochastic
variation and fuzzy imprecision for modeling demands,
deterioration rates, and costs to represent uncertain
circumstances realistically.

3. Optimize decision variables such as order quantity,
replenishment cycle time, pricing, and backlog
percentage, and make recommendations related to cost-
saving and environmentally sustainable management of
inventories.

3.2 Research contributions

» Incorporates costs related to carbon emissions into the
model of deteriorating products to improve
sustainability considerations.

* Accounts for learning dependent demand to reflect
behavior related to market learning processes.

» Partial backlog models to depict common situations
related to shortages and consumer wait behavior.

+ Uses an  efficient optimization framework
accommodating uncertainties of both stochastic
variability and fuzzy imprecision types.

» Offers numerical illustrations and sensitivity analyses to
provide management perspectives and justifications for
the application of the proposed framework.

3.3 Notations
Symbol Description
Q Order quantity per
replenishment cycle
T Length of the replenishment
cycle
p Selling price per unit
B Fraction of customers who
agree to wait during shortage
(backlogging rate)
0 Constant deterioration rate
D(p,L) Demand rate dependent on
price p and learning effect L
L(t) Learning index (increases over
time or over cycles)
a Price-sensitivity coefficient of
demand
y Learning-sensitivity coefficient
of demand
Cp Purchasing cost per unit
Ch Holding cost per unit per unit
time
Cs Shortage cost per unit short
Ch Carbon-emission cost per unit
of emission
Ce Carbon-emission cost per unit
of emission
eh Emission rate per unit held in
inventory
eo Emission rate per order placed
I(t) Inventory level at time t
TB(T,Q,p,B) Total backlogged units over
cycle time
TD(T,Q,p) Total deteriorated units over
cycle time
TC(T,Q,p,B) Total expected cost per cycle
HC Holding cost
DC Deterioration cost
N4 Shortage cost
Bc Backlogging cost
EC Carbon-emission cost
PC Purchasing cost
3.4 Model Assumption

1. The model described here is single-echelon and
features instantaneous replenishment.

2. The item degrades steadily at a known rate and
unsold units have no salvage value.

3. Customer demand is dependent on cumulative
sales and sensitive to pricing.

4. The demand, deterioration rate, and cost variables
suffer from hybrid uncertainty (stochastic &
fuzzy).
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5. Shortages are allowed; only part of the unsatisfied
demand represents backlog; the other part
represents loss.

6. As wait time increases, customer willingness to
wait will decrease.

7. Carbon costs associated with ownership and
replenishment have been added to total costs.

8. Inventory reduction results from both demand and
deterioration, and backlog orders fulfill demand
partially.

9. Decision variables involved here are order
quantity, replenishment cycle time, pricing, and
backlog proportion.

10. The task is to minimize total expected cost per
cycle while ensuring robust and environmentally
responsible inventory policies.

IV. MODEL FORMULATION

The study considers the inventory system with
deterioration, learning-dependent demand, and hybrid
uncertainty. Fig. 2 presents the seasonal movement of the
inventory level, offering insight into stock fluctuations
during the inventory process
Let I(t) denote the inventory level at time t € [0, T], where
T; is the stock-out time in each replenishment cycle.

Stock level (1(2))

=

« Time (£)
4 Ji(t)

Stock out time
-

Fig. 2: Inventory Level over time

The inventory depletes due to demand and deterioration
according to the differential equation:

dI(t
% = —Dh(p,L(t)) = 6I(t), te€[0,Ts],

And the boundary conditions are:  1(0) = Q,I(Ty) = 0.
4.1 Learning-Dependent Demand

We assume that customer familiarity with the product
increases over time following a standard learning curve:

L(t) = kyt, where k > 0 measures the strength of the
learning effect.

The nominal (deterministic) demand is:

Do(p, L(t)) = a— bp + cL(t) = a — bp + cky/t,

with a,b,c > 0.

4.2 Hybrid Uncertainty in Demand

Real-world demand is affected by both stochastic
variability and fuzzy ambiguity.
Thus, the hybrid-uncertain demand rate is modeled as:

Dh(p,L(t)) = Do (p, L())(1 +&(t) + 1)
where
o &(t) is a zero-mean stochastic disturbance (e.g.,
normally distributed),
e i €[4, 6] is a fuzzy uncertainty factor
representing imprecise demand fluctuations.
This formulation simultaneously captures random shocks
and imprecise human judgments.

Since analytical tractability is required, we use the
expected hybrid demand, which is:

E[Dh(p, L(t)] = Do(p, L)) (L + )

because E[(t)] = 0.

Therefore, the inventory dynamics become:

L0 4 61(t) = —(1 + f)(a — bp + ckvt)
Solving this differential equation with boundary condition
we get,

10 = e-epg — LF D@ bR ~ 1)

- (1
? (
+ Dck(=6)2y(3/2,-61)]
Applying the terminal condition I(Ts) = 0, we obtain the
optimal quantity is:
_. (a—bp)(e®Ts-1 =3
Q=+ D[Ry ck(-0)7y(3/2,-60T, )]
In this case, costs associated with inventories have been

described in terms of cycles.
1. Purchasing Cost:  PC = Cp. Q.

2. Holding Cost: HC = Ch [}*I(t) dt

A+ Da—bp)(e” 1)
0

Ts
HC = Chf e %[ -
0 -3
+ [)ck(—0)Z y(3/2,—6t)] dt
3. Deterioration Cost: DC = Cd. 8 fOTS 1(t)dt
Ts
DC = Cd.ef T P )] bp)(e” ~1)
0 _3 0
— (1 + f)ck(—8)Zy(3/2,—61)] dt
4. Shortage cost: SC = Cs(1 — B) fT: (—I(t))dt

i _ ot_
SC=Cs(1— B) [} -0t 4 (g 4

0
=3
Dck(=0)7y (5, ~6t) ~ Q) dt
5. Backlogging Cost: BC = Cb.BfTT(—I(t)) dt

TN — ot _
BC = Cb.p [ e~0 (RO (1 4
N

-3
mck(-0)zy (3, —6t) - Q] dt
6. Carbon-Emission Cost: EC = Ce (eh f I(t) dt +
€0.Q)

_A+Da- bp)(ef —1)
0

T
EC =Ce.(eh | e? [Q
/

— (1 + @)ck(=0) 7y (; —Gt)] dt
+ e0.Q.
Finally, the total expected cost per cycle is:
TC(T,Q,p,B) =PC+HC+DC+SC+BCH+EC
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T T
TC(T,Q,p,B) = Cp.Q + Chfl(t) dt + B.Cdfl(t) dt
0 0

+Cs(1—-8) f(—l(t)) dt
T s
+ Cbh.B f(—l(t)) dt

T
+ Ce.ehf I(t) dt + Ce.eo0.Q.
0

The total minimum Cost per cycle time:
min TC(,Q,p,
T,Q,lp_ﬁ ( Qng B)
Subject to: Q = (1 + ﬁ) [W +
3 3
ck(=0)zy (;'—GTS )] ’
0<B<1Lp>0T>0.

V. NUMERICAL EXAMPLE

To demonstrate the practicality of our developed
framework/model, we propose to use a simulation example
involving real-parameter value sets common to literature
models. The set of values will reflect medium-demand
products involving deterioration and partially backlogged
merchandise impacted by carbon emissions regulations.
Taking parameter values as per unit: a = 120;b =
08; p=50;c=6; k=25;0;0.04; u=0.15; Cp =
25;Ch =1.6;Cd =2;Cs =8;Cb =4;Ce =0.3;eh =
0.04;8 =0.6; e0o =0.5;T =8,Ts =5. Table 2 shows
the calculated values for each cost component and the
associated inventory quality.

TABLE 2: CALCULATED VALUE OF ALL COSTS

AND QUANTITY.

Contents Value

Q 554.2 units (app.)

PC 13,855

HC 2,614

DC 434

SC 1,120

BC 546

EC 387

TC 18,956

5.1 Sensitivity Analysis

This section analyzes how the total cost and order quantity
respond to changes in key parameters. Each parameter is
varied by £5% to £20% while others remain fixed.

5.1.1 Effect of Learning Coefficient k

Table 3 and Fig. 3 together display how the learning
coefficient significantly affects the total cost. They also
show that the changes in learning behavior affect the overall

performance of the system. In the higher learning effect
model, the effect of learning reduces the inventory needed
in the beginning cycles, hence the reduced costs of holding
the inventory. The order quantity also rises due to the
increased learning effect experienced towards the latter
cycles.

TABLE 3: EFFECT OF LEARNING COEFFICIENT

Variation k Q TC
-20% 2.0 518 19,420
-15% 2.125 528 19,180
-10% 2.25 539 19,050

-5% 2.375 546 18,995
Base 2.5 554 18,956
5% 2.375 563 18,920
10% 2.75 570 18,880
15% 2.875 581 18,805
20% 3.0 593 18,740

Fig. 3: Effect of Learning Coefficient on the Total Cost.

Effect of percentage change of Learning

Coefficient

8 7.039711

6 4.873646

4 2447774 . 6245492.888087
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0

-2 % % % !% 0 5% 10%  15%. o 20%

075658

-1.44404 .0.18991 -0.40093
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-6 -4.69314

-8 -6.49819

H%Q m%TC

5.1.2 Effect of Deterioration Rate 0

Table 4 and Fig. 4 show how greater deterioration levels
affect overall inventory performance, illustrating the effect
of the deterioration rate on the total cost.

TABLE 4: EFFECT OF DETERIORATION RATE.

Variation 0 Q TC
-20% 0.032 505 17,860
-15% 0.034 511 18,120
-10% 0.036 528 18,400
-5% 0.038 540 18,680
Base 0.040 554 18,956

5% 0.042 566 19,320
10% 0.044 578 19,700
15% 0.046 595 20,080
20% 0.048 612 20,520
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Fig. 4: Effect of Deterioration Rate on the Total Cost.

Effect of Deterioration Rate 6
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As the deterioration rate increases, the value of the order
quantity jumps considerably due to the necessity of ordering
higher amounts of inventory to offset the deterioration. The
overall cost increases substantially because of the combined
impact of additional ordering and holding costs.

5.1.3 Effect of Price p

Table 5 and Fig. 5 demonstrate how fluctuations in the
selling rate affect the whole inventory achievement,

shortage costs. This translates to the need for a careful
setting of the price alongside the inventory model elements.

5.1.4 Effect of Hybrid Uncertainty

The impact of hybrid uncertainty on the overall cost is
displayed in Table 6 and Fig. 6

TABLE 6: EFFECT OF HYBRID UNCERTAINTY.

Variation u Q TC
-20% 0.12 529 18,140
-15% 0.1275 536 18,340
-10% 0.135 541 18,510
-5% 0.1425 548 18,735
Base 0.15 554 18,956
+5% 0.1575 562 19,100
+10% 0.165 568 19,320
+15% 0.1725 574 19,580
+20% 0.18 580 19,875

Fig. 6: Effect of Hybrid uncertainty on the Total Cost.

Effect of Hybrid Uncertainty g

6% 43050

illustrating the effect of price on the total cost.

TABLE 5: EFFECT OF PRICE.

Variation p Q TC
-20% 40 636 20,333
-15% 42.5 612 19,990
-10% 45 591 19,670
-5% 47.5 572 19,320
Base 50 554 18,956
+5% 52.5 538 18,720
+10% 55 523 18,550
+15% 57.5 508 18,380
+20% 60 487 19,410

Fig. 5: Effect of Price on the Total Cost.
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Increases in the levels of uncertainty related to the demand
and the model’s parameters require larger amounts of safety
stock, which increases the costs. The hybrid type of
uncertainty, which involves fuzzy as well as stochastic
uncertainties, has its own direct impact of inflation
regarding the demand.

5.1.5 Effect of Carbon-Emission Cost Ce

Fig. 7 graphically depicts how changes in carbon emissions
influence the total cost of the system, while Table 7 presents
the numerical outcomes.

TABLE 7: EFFECT OF CARBON EMISSION.

15 10.46931
10 -7 ~911I
0

5 -20% -15% -10% 5% o 8§§@~99!;%3 l{gez
10 -5.59567
-8.30325
-15 -12.0939

[¢]

mQ% mMTC%

A low price results in higher demand volume, meaning that
the greater demand necessitates a larger order quantity. This
results in an increased total cost. On the contrary, a high
price will generate less demand but will also generate higher

Variation Ce TC
-20% 0.24 18,650
-15% 0.255 18,740
-10% 0.27 18,810
-5% 0.285 18,890
Base 0.30 18,956
+5% 0.315 19,020
+10% 0.33 19,100
+15% 0.345 19,180
+20% 0.36 19,275
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Fig. 7: Effect of Carbon Emission on the Total Cost.
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Raised levels of carbon emission costs will result in an
overall increase in costs, which will cause the optimal
policy to move towards the use of smaller batches.

5.2 Findings

From the developed robust sustainable inventory model
for deteriorating items under hybrid uncertainty conditions,
learning depending demand, and partial backlogging, it may
be concluded that:

i. Optimal Order Quantity (Q) and Cycle Time (T)

The optimal order quantity will be greater if deterioration
rates (6) are high since it will require replenishing to
prevent increased deterioration. Conversely, increasing
costs of carbon emissions (Ce) result in reduced optimal
order quantities because focusing on emissions reduction
becomes important. The cycle time will be lowered by
increased demand variability, ensuring product availability
and preventing shortages.

ii. Effect of Learning-Dependent Demand

The inclusion of learning effects (y > 0) increases the
beginning level of inventory to meet the increasing
demands seen from cycle to cycle. The omission of learning
effects can result in shortages and increased backordering
costs, which emphasizes the need to account for learning
behavior.

iii. Partial Backlogging Behavior (f3)

A greater value of f implies increased backlogging costs
but results in lower shortage costs.

The optimal level of B must be maintained to keep costs to
a minimum while not compromising customer satisfaction.

iv. Impact of Sustainability (Carbon-Emission
Costs)

Adding carbon emissions costs (C,) changes optimal
solutions to have lower order quantities (Q) and longer
cycle times (T). The environmental costs incurred have
been reduced to some extent; instead, there will be marginal
increases in holding costs.

v. Hybrid Uncertainty

The fuzzy stochastic modeling of uncertain parameters
helps to make reliable decisions about inventories even in
uncertain situations. Overlooking hybrid uncertainty may
cause inefficient management of inventory.

V.  RECOMMENDATIONS

6.1 For Managers

I.  Use strong optimization methods to factor in
uncertainties related to demand, costs, and
deterioration rates.

II. Carbon emissions costs should be factored into
inventory management decisions to align business
activities with sustainability goals.

III.  To deal effectively with shortages and keep some of
their customers, they should implement partial
backlogging policies.

6.2 For Future Research

I.  Generalize the developed modeling framework to
M-product systems involving coupled demands to
investigate more practical scenarios of supply chain
management.

II. Examine dynamic pricing models together with
environmental regulations to improve profitability
and sustainability.

III.  Test metaheuristic techniques such as GA and PSO
to improve the computational efficiency of large-
scale nonlinear inventory models.

6.3 Conclusion

A comprehensive and optimum inventory model for
perishable items was developed, combining these models:

I.  Learning-dependent demand,

II.  Hybrid Uncertainty (stochastic & fuzzy),
III.  Partial backlogging, and
IV.  Carbon Emission-Aware Cost

The developed model ensures reliable and environmentally
responsible approaches to cost-effective inventory
management. The application of example problems and
sensitivity analyses shows how learning rate differences,
deterioration rates, and costs of carbon emissions
significantly affect the optimal results of inventory
management. The study results demonstrate that
sustainability can ensure cost efficiency in inventory
management, considering both environmental and
operational costs. The framework provides a strategic
decision aid for managers and can form the basis for further
development in even more complex scenarios.
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