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Abstract – Conditions in the environment, operational 
costs, as well as product wastage make it essential to have 
sustainable methods of managing inventories for perishable 
commodities. The paper suggests an efficient inventory 
management methodology. Carbon emissions' cost 
considerations, learning about demands based on demands' 
dependence on learning, as well as partial backlog based 
on market variability related to consumer behavior, form 
part of variability related to ‘hybrid uncertainty.’ The idea 
assumes progression in demands as consumers learn about 
their product (learning effect), considering their instability 
related to market conditions. A particular product degrades 
over time. The backlog level related to shortages is partially 
fulfilled, depending on consumer behavior related to wait 
time. To minimize the cost associated with inventory, 
appropriate optimization strategies are employed. These 
costs would encompass purchase costs, storage costs, 
shortage costs, deterioration costs, and carbon emissions. 
Decisions about inventories depend on learning behavior, 
uncertainties, and sustainability laws, as results from 
sensitivity analyses and numerical experiments have shown. 
The results make it clear that learning and the costs of 
emissions must be considered to come up with viable and 
sustainable solutions. Decision-makers can learn from 
these results to find a way to combine environmental and 
financial success. The presented method helps to optimize 
financial and sustainability goals simultaneously. 

Keywords: Inventory Management, Deteriorating 
Products, Learning-dependent Demand, Partial 
Backlogging, Hybrid Uncertainty. 

I. INTRODUCTION 

In current scenarios, managing inventories associated 
with perishable products has become a difficult task for 
producers and organizations across industries due to 
increasing sustainability issues and changing consumer 
behavior. Very perishable products, such as food products, 
pharmaceutical products, and chemical products, have 
shown utmost susceptibility to storage environment 
conditions, and inefficient management decisions regarding 
these inventories result in increased wastage and increased 
costs. Organizations also come under intense pressure to cut 
down their carbon emissions from manufacturing, storage, 
and transport processes. 

In classical models of inventory management, shortages 
were assumed to be completely backlogged, sustainability 
costs were neglected, and demands were assumed to be 
perfectly predictable. In reality, shortages can be only 
partially backlogged, while demands depend on learning 

behavior because demands from consumers keep increasing 
as they learn about new products. Further, demands, 
deterioration rates, and cost coefficients are all affected by 
hybrid uncertainties. 

To overcome these challenges, this research introduces a 
resilient, sustainable inventory model that considers the 
carbon cost of emissions, learning-type demand, partial 
backlog, and hybrid uncertainty. Specifically, this study 
seeks to provide managers with strategies to ensure profit 
sustainability while being environmentally responsible to 
ensure coordinated decisions regarding order quantities, 
pricing structures, ordering intervals, and backlog. 

Due to the recent trend of focusing on sustainable supply 
chains, it has become essential for organizations to take into 
account the cost of carbon emissions related to storage and 
shipment, which hasn't been considered previously in 
traditional models of inventory. Further, the area of 
optimization under uncertainty hasn't received adequate 
attention. 

The presented research bridges such a gap by formulating a 
robust framework for inventories related to depreciable 
items to account for costs associated with carbon emissions, 
learning effects, partial backlog behavior, and uncertainties 
generated from stochastic as well as fuzzy sources. A 
numerical case study testifies to how learning effects and 
joint risks caused by sustainability policies and uncertain 
sources have impacted optimal decisions regarding 
inventories. 

II. LITERATURE REVIEW 

The inventory management of deteriorating items and 
perishables has been a considerably explored research field, 
mostly when there is uncertainty involved and when there 
is partial backlogging. Some of the early contributions to 
the field of deteriorating items and inventory management 
of perishables came from the work of Goyal and Giri [1] 
and Nahmias [2]. The research focused mainly on the 
necessity of proper models of demand and deterioration. 
The models were later advanced to consider fuzzy and 
stochastic uncertainties. In this field, the work of 
Jamkhaneh and Taleizadeh [3] introduced an EOQ model of 
perishable items when there are stochastic demand and 
partial backlogging. 

The effect of demand dependence on inventory level and 
price has been explored in various research articles. Lin & 
Xie [4] presented an EOQ model involving deteriorating 
items and trade credit when the price and inventory level are 
dependent, and also the effect of inventory level and price 
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sensitivity on the order quantity was explored by Roy & 
Chaudhuri [5]. In the case of non-instantaneous 
deterioration of items, various research articles presented 
models involving a partial backlog of inventory levels. 
Chaudhary et al. [6], and Khan et al. [7, 8] presented models 
involving non-linear demand and a hybrid payment method. 
Additionally, the combined effect of price decision and 
advance payment in deteriorating inventory models was 
explored in the research study of Mashud et al. [9]. 

Issues of sustainability and carbon emissions have been of 
utmost significance in recent years. Works of Alamri et al. 
[10] and Mishra et al. [11] introduced EOQ models and 
sustainable inventory management practices incorporating 
the costs of carbon emission, deterioration, and backorders, 
respectively. Likewise, Pervin [12] introduced the concept 
of sustainable inventory management, incorporating 
controllable carbon emission levels in the context of 
inventory management involving backorders. Additionally, 
Negi and Singh [13] and Xu et al. [14] investigated the 
applications of advanced hybrids and clouded fuzzy 
methodologies. Sarker et al. [15] introduced models 
involving instantaneously deteriorated items in the context 
of multiple trade facilities inventory management involving 
stock-dependent and price-dependent demands as well as 
full backlog models. This work delves into the latest 
applications of the models. In sum, the existing literature 
reveals a gradual shift from the classical EOQ model and its 
deterministic variants to hybrid models involving fuzzy and 
stochastic components and sustainability considerations in 
inventory models. The above literature encompasses the 
theory and insights needed to develop environmentally 
sustainable and financially optimized inventory models of 
deteriorating items. These models substantively contribute 
to understanding the behavior of inventory levels in various 
inventory models. Table 1 gives a detailed overview of the 
published studies with their main contributions to the field. 

TABLE 1: RELATED RESEARCH STUDIES AND 
THEIR CONTRIBUTIONS. 

Autho
r(s) 

Carbo
n-

Emissi
on 

Cost 
Consid

ered 

Demand 
Pattern 

Shortage/Bac
klogging 

Key 
Parame

ters/ 
Feature

s 

Nahmi
as [2] 

No Classical 
perishable 
demand 
models 

Basic shortage 
assumptions 

Foundati
onal 

perishab
ility 

framewo
rks 

Goyal 
& Giri 

[1] 

No Classical 
deteriorati
ng demand 

Allows 
shortages 

Hybrid 
uncertai

nty 
(fuzzy + 
stochasti

c) 
Jamkh
aneh 

& 
Taleiz
adeh 
[3] 

No Hybrid 
fuzzy-

stochastic 

Partial 
backlogging 

 
Inflation 
& time 

discount
ing 

Autho
r(s) 

Carbo
n-

Emissi
on 

Cost 
Consid

ered 

Demand 
Pattern 

Shortage/Bac
klogging 

Key 
Parame

ters/ 
Feature

s 

Mishra 
et al. 
[11] 

Yes Standard 
demand 

Yes Carbon-
emission 
aware; 

sustaina
ble 

inventor
y 

Sarker 
et al. 
[15] 

no Deteriorati
ng demand 

Full 
backlogging 

Multiple 
trade 

facilities
; stock- 

and 
price-

depende
nt 

demand 
Xie & 

Lin 
[16] 

Yes Standard 
demand 

Yes Emissio
n-aware 
replenis
hment 

and 
order 

decision
s 

Das & 
Mahat
a [17] 

Yes Dynamic 
demand 

Backorder 
allowed 

Perishab
le items, 
advance

d 
preserva

tion 
policy 

Lin & 
Xie [4] 

No Learning-
dependent 
demand 

Not the 
primary focus 

Demand 
increase

s as 
consume
rs learn 

Giri & 
Chaud
huri 
[18] 

No Standard/v
ariable 
demand 

Partial 
backlogging 

Custome
r waiting 
behavior 

Khan 
et al. 
[7, 8] 

No Variable 
demand 
patterns 

Partial 
backlogging 

Non-
instantan

eous 
deteriora

tion; 
hybrid 

payment 
schemes 

 

2.2 Research Gap 

In reality, very few models have attempted to combine 
product degradation, HU, cost of carbon emissions, learning 
dependent demand, and PB together in a single framework. 
The separate research efforts have created a void in this 
area. The paper bridges this void. 

III. PROBLEM STATEMENT 

The task of managing inventories for deteriorating products 
in sustainable supply chains has become even more 
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difficult. The competition faces tough environmental 
regulations, market unpredictability, and changing 
consumer behaviors. The traditional inventory models 
considered the assumption of constant demand, ignored the 
carbon costs of emissions, and approximated shortages. In 
actual situations, systems encounter hybrid types of 
uncertainty due to both stochastic variability and the 
inaccuracy of information. The customer demands are 
continuously increasing as consumers learn. It is not always 
possible to partially backlog shortages. Models have not 
been applied simultaneously to deterioration products, 
learning rate-dependent demand, sustainability criteria, and 
partial backlog. Hence, managers do not have access to an 
ensemble methodology to deal effectively and sustainably 
with inventories. The paper proposes a new robust 
methodology combining carbon costs of emissions, learning 
rate-dependent demands, and partial backlog. Fig. 1 shows 
the interaction with the decision aspects, giving a clear 
picture of their relationships within the model. 

Decision Variable Interaction Chart. 

 

Fig. 1: Decision Variable Interaction Chart. 

3.1 Research Objectives 

1. Formulate a sustainable inventory management 
framework that simultaneously considers item decay 
rates, learning-based and sensitive-demand rates, carbon 
emissions costs, and partial backordering. 

2. Hybrid models of uncertainty entailing stochastic 
variation and fuzzy imprecision for modeling demands, 
deterioration rates, and costs to represent uncertain 
circumstances realistically. 

3. Optimize decision variables such as order quantity, 
replenishment cycle time, pricing, and backlog 
percentage, and make recommendations related to cost-
saving and environmentally sustainable management of 
inventories. 

3.2 Research contributions 

• Incorporates costs related to carbon emissions into the 
model of deteriorating products to improve 
sustainability considerations. 

• Accounts for learning dependent demand to reflect 
behavior related to market learning processes. 

• Partial backlog models to depict common situations 
related to shortages and consumer wait behavior. 

• Uses an efficient optimization framework 
accommodating uncertainties of both stochastic 
variability and fuzzy imprecision types. 

• Offers numerical illustrations and sensitivity analyses to 
provide management perspectives and justifications for 
the application of the proposed framework. 

3.3 Notations 

Symbol Description 
𝑄 Order quantity per 

replenishment cycle 
𝑇 Length of the replenishment 

cycle 
𝑝 Selling price per unit 
𝛽 Fraction of customers who 

agree to wait during shortage 
(backlogging rate) 

𝜃 Constant deterioration rate 
𝐷(𝑝, 𝐿) Demand rate dependent on 

price 𝑝 and learning effect 𝐿 
𝐿(𝑡) Learning index (increases over 

time or over cycles) 
𝑎 Price-sensitivity coefficient of 

demand 
𝛾 Learning-sensitivity coefficient 

of demand 
𝐶𝑝 Purchasing cost per unit 
𝐶ℎ Holding cost per unit per unit 

time 
𝐶𝑠 Shortage cost per unit short 
𝐶𝑏 Carbon-emission cost per unit 

of emission 
𝐶𝑒 Carbon-emission cost per unit 

of emission 
𝑒ℎ Emission rate per unit held in 

inventory 
𝑒𝑜 Emission rate per order placed 

𝐼(𝑡) Inventory level at time 𝑡 
 𝑇𝐵(𝑇, 𝑄, 𝑝, 𝛽) Total backlogged units over 

cycle time 
𝑇𝐷(𝑇, 𝑄, 𝑝) Total deteriorated units over 

cycle time 
𝑇𝐶(𝑇, 𝑄, 𝑝, 𝛽) Total expected cost per cycle 

𝐻𝐶 Holding cost 
𝐷𝐶 Deterioration cost 
𝑆𝐶 Shortage cost 
𝐵𝑐 Backlogging cost 
𝐸𝐶 Carbon-emission cost 
𝑃𝐶 Purchasing cost 

 

3.4 Model Assumption 

1. The model described here is single-echelon and 
features instantaneous replenishment. 

2. The item degrades steadily at a known rate and 
unsold units have no salvage value. 

3. Customer demand is dependent on cumulative 
sales and sensitive to pricing.  

4. The demand, deterioration rate, and cost variables 
suffer from hybrid uncertainty (stochastic & 
fuzzy). 
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5. Shortages are allowed; only part of the unsatisfied 
demand represents backlog; the other part 
represents loss. 

6. As wait time increases, customer willingness to 
wait will decrease. 

7. Carbon costs associated with ownership and 
replenishment have been added to total costs. 

8. Inventory reduction results from both demand and 
deterioration, and backlog orders fulfill demand 
partially. 

9. Decision variables involved here are order 
quantity, replenishment cycle time, pricing, and 
backlog proportion. 

10. The task is to minimize total expected cost per 
cycle while ensuring robust and environmentally 
responsible inventory policies. 

IV. MODEL FORMULATION 

The study considers the inventory system with 
deterioration, learning-dependent demand, and hybrid 
uncertainty. Fig. 2 presents the seasonal movement of the 
inventory level, offering insight into stock fluctuations 
during the inventory process 
Let 𝐼(𝑡) denote the inventory level at time 𝑡 ∈ [0, 𝑇௦], where 
𝑇௦ is the stock-out time in each replenishment cycle. 

 

Fig. 2: Inventory Level over time 

The inventory depletes due to demand and deterioration 
according to the differential equation: 

 
ௗூ(௧)

ௗ௧
= −𝐷ℎ൫𝑝, 𝐿(𝑡)൯ − 𝜃𝐼(𝑡),     𝑡 ∈ [0, 𝑇𝑠], 

And the boundary conditions are:     𝐼(0) = 𝑄, 𝐼(𝑇௦) = 0. 

4.1 Learning-Dependent Demand 

We assume that customer familiarity with the product 
increases over time following a standard learning curve: 

𝐿(𝑡) = 𝑘√𝑡,      where 𝑘 > 0 measures the strength of the 
learning effect. 
The nominal (deterministic) demand is: 
𝐷଴(𝑝, 𝐿(𝑡)) = 𝑎 − 𝑏𝑝 + 𝑐𝐿(𝑡) = 𝑎 − 𝑏𝑝 + 𝑐𝑘√𝑡,                         
with 𝑎, 𝑏, 𝑐 > 0. 

4.2 Hybrid Uncertainty in Demand 

Real-world demand is affected by both stochastic 
variability and fuzzy ambiguity. 
Thus, the hybrid-uncertain demand rate is modeled as: 

𝐷ℎ(𝑝, 𝐿(𝑡)) =  𝐷଴ (𝑝, 𝐿(𝑡))(1 + 𝜉(𝑡) + 𝜇෤)  
where 

 𝜉(𝑡) is a zero-mean stochastic disturbance (e.g., 
normally distributed), 

 𝜇෤ ∈ [−𝛿, 𝛿] is a fuzzy uncertainty factor 
representing imprecise demand fluctuations. 

This formulation simultaneously captures random shocks 
and imprecise human judgments.  

Since analytical tractability is required, we use the 
expected hybrid demand, which is: 
𝐸[𝐷ℎ(𝑝, 𝐿(𝑡))] = 𝐷଴(𝑝, 𝐿(𝑡))(1 + 𝜇෤)  
because 𝐸[𝜉(𝑡)] = 0. 
Therefore, the inventory dynamics become: 
ௗூ(௧)

ௗ௧
+ 𝜃𝐼(𝑡) = −(1 + 𝜇෤)(𝑎 − 𝑏𝑝 + 𝑐𝑘√𝑡 )  

Solving this differential equation with boundary condition 
we get, 

 𝐼(𝑡) = 𝑒ିఏ௧[𝑄 −
(1 + 𝜇෤)(𝑎 − 𝑏𝑝)൫𝑒ఏ௧ − 1൯

𝜃
− (1

+ 𝜇෤)𝑐𝑘(−𝜃)
ିଷ
ଶ 𝛾(3/2, −𝜃𝑡)] 

Applying the terminal condition 𝐼(𝑇௦) = 0, we obtain the 
optimal quantity is: 

 𝑄 = (1 + 𝜇෤)[
(௔ି௕௣)൫௘ഇ೅ೞିଵ൯

ఏ
+ 𝑐𝑘(−𝜃)

షయ

మ 𝛾(3/2, −𝜃𝑇௦ )]  

In this case, costs associated with inventories have been 
described in terms of cycles. 
1. Purchasing Cost:      𝑃𝐶 = 𝐶𝑝. 𝑄. 

2. Holding Cost: 𝐻𝐶 = 𝐶ℎ ∫ 𝐼(𝑡ೞ்

଴
) 𝑑𝑡 

     𝐻𝐶 = 𝐶ℎ න 𝑒ିఏ௧[𝑄 −
(1 + 𝜇෤)(𝑎 − 𝑏𝑝)൫𝑒ఏ௧ − 1൯

𝜃
− (1

ೞ்

଴

+ 𝜇෤)𝑐𝑘(−𝜃)
ିଷ
ଶ 𝛾(3/2, −𝜃𝑡)]  𝑑𝑡 

3. Deterioration Cost: 𝐷𝐶 = 𝐶𝑑. 𝜃 ∫ 𝐼(𝑡ೞ்

଴
) 𝑑𝑡 

      𝐷𝐶 = 𝐶𝑑. 𝜃 න 𝑒ିఏ௧[𝑄 −
(1 + 𝜇෤)(𝑎 − 𝑏𝑝)൫𝑒ఏ௧ − 1൯

𝜃

ೞ்

଴

− (1 + 𝜇෤)𝑐𝑘(−𝜃)
ିଷ
ଶ 𝛾(3/2, −𝜃𝑡)]  𝑑𝑡 

4. Shortage cost: 𝑺𝑪 = 𝑪𝒔(𝟏 − 𝜷) ∫ (−𝐼(𝑡
்

ೞ்
))𝒅𝒕 

        𝑆𝐶 = 𝑪𝒔(𝟏 − 𝜷) ∫ 𝑒ିఏ௧[
(ଵାఓ෥)(௔ି௕௣)൫௘ഇ೟ିଵ൯

ఏ
+ (1 +

்

ೞ்

𝜇෤)𝑐𝑘(−𝜃)
షయ

మ 𝛾 ቀ
ଷ

ଶ
, −𝜃𝑡ቁ − 𝑄] 𝒅𝒕 

5. Backlogging Cost: 𝑩𝑪 = 𝑪𝒃. 𝜷 ∫ (−𝐼(𝑡))
்

ೞ்
𝒅𝒕 

     𝐵𝐶 = 𝑪𝒃. 𝜷 ∫ 𝑒ିఏ௧[
(ଵାఓ෥)(௔ି௕ )൫௘ഇ೟ିଵ൯

ఏ
+ (1 +

்

ೞ்

𝜇෤)𝑐𝑘(−𝜃)
షయ

మ 𝛾 ቀ
ଷ

ଶ
, −𝜃𝑡ቁ − 𝑄] 𝒅𝒕 

6. Carbon-Emission Cost: 𝐸𝐶 = 𝐶𝑒 ቀ𝑒ℎ ∫ 𝐼(𝑡
்

଴
ቁ  𝑑𝑡 +

𝑒𝑜. 𝑄) 

  𝐸𝐶 = 𝐶𝑒. (𝑒ℎ න 𝑒ିఏ ቈ𝑄 −
(1 + 𝜇෤)(𝑎 − 𝑏𝑝)൫𝑒ఏ௧ − 1൯

𝜃

்

଴

− (1 + 𝜇෤)𝑐𝑘(−𝜃)
ିଷ
ଶ 𝛾 ൬

3

2
, −𝜃𝑡൰቉  𝑑𝑡

+ 𝑒𝑜. 𝑄. 

Finally, the total expected cost per cycle is: 

𝑇𝐶(𝑇, 𝑄, 𝑝, 𝛽) = 𝑃𝐶 + 𝐻𝐶 + 𝐷𝐶 + 𝑆𝐶 + 𝐵𝐶 + 𝐸𝐶  
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𝑇𝐶(𝑇, 𝑄, 𝑝, 𝛽) =   𝐶𝑝. 𝑄 + 𝐶ℎ න 𝐼(𝑡)

்

଴

𝑑𝑡 + 𝜃. 𝐶𝑑 න 𝐼(𝑡)

்

଴

 𝑑𝑡

+ 𝐶𝑠(1 − 𝛽) න(−𝐼(𝑡))

்

ೞ்

 𝑑𝑡

+ 𝐶𝑏. 𝛽 න(−𝐼(𝑡))

்

ೞ்

 𝑑𝑡

+ 𝐶𝑒. 𝑒ℎ න 𝐼(𝑡)

்

଴

𝑑𝑡 + 𝐶𝑒. 𝑒𝑜. 𝑄. 

The total minimum Cost per cycle time: 
  

min
்,ொ,௣,ఉ

𝑇𝐶(, 𝑄, 𝑝, 𝛽) 

Subject to: 𝑄 = (1 + 𝜇෤) ൤
(௔ି௕௣)൫௘ഇ೅ೞିଵ൯

ఏ
+

𝑐𝑘(−𝜃)
షయ

మ 𝛾 ቀ
ଷ

ଶ
, −𝜃𝑇௦ ቁ൨  , 

 
0 < 𝛽 < 1, 𝑝 > 0, 𝑇 > 0 . 

V. NUMERICAL EXAMPLE 

To demonstrate the practicality of our developed 
framework/model, we propose to use a simulation example 
involving real-parameter value sets common to literature 
models. The set of values will reflect medium-demand 
products involving deterioration and partially backlogged 
merchandise impacted by carbon emissions regulations. 
Taking parameter values as per unit: 𝑎 = 120; 𝑏 =
0.8 ;  𝑝 = 50; 𝑐 = 6;  𝑘 = 2.5; 𝜃; 0.04;  𝜇 = 0.15;  𝐶𝑝 =
25; 𝐶ℎ = 1.6; 𝐶𝑑 = 2; 𝐶𝑠 = 8; 𝐶𝑏 = 4; 𝐶𝑒 = 0.3; 𝑒ℎ =
0.04; 𝛽 = 0.6;  𝑒𝑜 = 0.5; 𝑇 = 8, 𝑇𝑠 = 5.  Table 2 shows 
the calculated values for each cost component and the 
associated inventory quality. 

TABLE 2: CALCULATED VALUE OF ALL COSTS 
AND QUANTITY. 

Contents Value 
Q 554.2 units (app.) 
PC 13,855 
HC 2,614 
DC 434 
SC 1,120 
BC 546 
EC 387 
TC 18,956 

 
5.1 Sensitivity Analysis 

This section analyzes how the total cost and order quantity 
respond to changes in key parameters. Each parameter is 
varied by ±5% to ±20% while others remain fixed. 

5.1.1 Effect of Learning Coefficient 𝒌 

Table 3 and Fig. 3 together display how the learning 
coefficient significantly affects the total cost. They also 
show that the changes in learning behavior affect the overall 

performance of the system.  In the higher learning effect 
model, the effect of learning reduces the inventory needed 
in the beginning cycles, hence the reduced costs of holding 
the inventory. The order quantity also rises due to the 
increased learning effect experienced towards the latter 
cycles. 

TABLE 3: EFFECT OF LEARNING COEFFICIENT 

Variation 𝒌 𝑸 𝑻𝑪 

-20% 2.0 518 19,420 

-15% 2.125 528 19,180 

-10% 2.25 539 19,050 

-5% 2.375 546 18,995 

Base 2.5 554 18,956 

5% 2.375 563 18,920 

10% 2.75 570 18,880 

15% 2.875 581 18,805 

20% 3.0 593 18,740 
 
Fig. 3: Effect of Learning Coefficient on the Total Cost. 

 

5.1.2 Effect of Deterioration Rate 𝜽 

Table 4 and Fig. 4 show how greater deterioration levels 
affect overall inventory performance, illustrating the effect 
of the deterioration rate on the total cost. 

TABLE 4: EFFECT OF DETERIORATION RATE. 

Variation 𝜽 𝑸 𝑻𝑪 

-20% 0.032 505 17,860 

-15% 0.034 511 18,120 

-10% 0.036 528 18,400 

-5% 0.038 540 18,680 

Base 0.040 554 18,956 

5% 0.042 566 19,320 

10% 0.044 578 19,700 

15% 0.046 595 20,080 

20% 0.048 612 20,520 

-6.49819

-4.69314

-2.70758
-1.44404

0
1.624549

2.888087

4.873646

7.039711

2.447774
1.181684

0.495885 0.20574 0
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Fig. 4: Effect of Deterioration Rate on the Total Cost. 

 

As the deterioration rate increases, the value of the order 
quantity jumps considerably due to the necessity of ordering 
higher amounts of inventory to offset the deterioration. The 
overall cost increases substantially because of the combined 
impact of additional ordering and holding costs.  

5.1.3 Effect of Price p 

Table 5 and Fig. 5 demonstrate how fluctuations in the 
selling rate affect the whole inventory achievement, 
illustrating the effect of price on the total cost. 

TABLE 5: EFFECT OF PRICE. 

Variation 𝒑 𝑸 𝑻𝑪 
-20% 40 636 20,333 
-15% 42.5 612 19,990 
-10% 45 591 19,670 
-5% 47.5 572 19,320 
Base 50 554 18,956 
+5% 52.5 538 18,720 

+10% 55 523 18,550 
+15% 57.5 508 18,380 
+20% 60 487 19,410 

 
Fig. 5: Effect of Price on the Total Cost. 

 

A low price results in higher demand volume, meaning that 
the greater demand necessitates a larger order quantity. This 
results in an increased total cost. On the contrary, a high 
price will generate less demand but will also generate higher 

shortage costs. This translates to the need for a careful 
setting of the price alongside the inventory model elements. 

5.1.4 Effect of Hybrid Uncertainty μ ̃ 

The impact of hybrid uncertainty on the overall cost is 
displayed in Table 6 and Fig. 6 

TABLE 6: EFFECT OF HYBRID UNCERTAINTY. 

Variation 𝝁෥ 𝑸 𝑻𝑪 
-20% 0.12 529 18,140 
-15% 0.1275 536 18,340 
-10% 0.135 541 18,510 
-5% 0.1425 548 18,735 
Base 0.15 554 18,956 
+5% 0.1575 562 19,100 

+10% 0.165 568 19,320 
+15% 0.1725 574 19,580 
+20% 0.18 580 19,875 

 
Fig. 6: Effect of Hybrid uncertainty on the Total Cost. 

 

Increases in the levels of uncertainty related to the demand 
and the model’s parameters require larger amounts of safety 
stock, which increases the costs. The hybrid type of 
uncertainty, which involves fuzzy as well as stochastic 
uncertainties, has its own direct impact of inflation 
regarding the demand. 

5.1.5 Effect of Carbon-Emission Cost Ce 

Fig. 7 graphically depicts how changes in carbon emissions 
influence the total cost of the system, while Table 7 presents 
the numerical outcomes. 

TABLE 7: EFFECT OF CARBON EMISSION. 

Variation 𝑪𝒆 𝑻𝑪 
-20% 0.24 18,650 
-15% 0.255 18,740 
-10% 0.27 18,810 
-5% 0.285 18,890 
Base 0.30 18,956 
+5% 0.315 19,020 

+10% 0.33 19,100 
+15% 0.345 19,180 
+20% 0.36 19,275 

-4.51264

-3.2491
-2.34657

-1.08303

0

1.444043
2.527076

3.610108
4.693141

-4.30471

-3.24963
-2.35282

-1.16586

0
0.759654

1.920236
3.291834

4.848069

-6

-4

-2

0

2

4

6

-20% -15% -10% -5% 0 5% 10% 15% 20%

Effect of Hybrid Uncertainty 𝝁 ̃

Q% TC%



GKU Journal of Multidisciplinary Research (GKUJMR) 

Page | 97  
 

Fig. 7: Effect of Carbon Emission on the Total Cost. 

 

Raised levels of carbon emission costs will result in an 
overall increase in costs, which will cause the optimal 
policy to move towards the use of smaller batches. 

5.2 Findings 

From the developed robust sustainable inventory model 
for deteriorating items under hybrid uncertainty conditions, 
learning depending demand, and partial backlogging, it may 
be concluded that: 

i. Optimal Order Quantity (𝑸) and Cycle Time (𝑻) 

The optimal order quantity will be greater if deterioration 
rates (𝜃) are high since it will require replenishing to 
prevent increased deterioration. Conversely, increasing 
costs of carbon emissions (𝐶ₑ) result in reduced optimal 
order quantities because focusing on emissions reduction 
becomes important. The cycle time will be lowered by 
increased demand variability, ensuring product availability 
and preventing shortages. 

ii. Effect of Learning-Dependent Demand 

The inclusion of learning effects (𝛾 >  0) increases the 
beginning level of inventory to meet the increasing 
demands seen from cycle to cycle. The omission of learning 
effects can result in shortages and increased backordering 
costs, which emphasizes the need to account for learning 
behavior. 

iii. Partial Backlogging Behavior (𝜷) 

A greater value of 𝛽 implies increased backlogging costs 
but results in lower shortage costs. 

The optimal level of β must be maintained to keep costs to 
a minimum while not compromising customer satisfaction. 

iv. Impact of Sustainability (Carbon-Emission 
Costs) 

Adding carbon emissions costs (𝐶௘) changes optimal 
solutions to have lower order quantities (𝑄) and longer 
cycle times (𝑇). The environmental costs incurred have 
been reduced to some extent; instead, there will be marginal 
increases in holding costs. 

v. Hybrid Uncertainty 

The fuzzy stochastic modeling of uncertain parameters 
helps to make reliable decisions about inventories even in 
uncertain situations. Overlooking hybrid uncertainty may 
cause inefficient management of inventory. 

VI. RECOMMENDATIONS 

6.1 For Managers 

I. Use strong optimization methods to factor in 
uncertainties related to demand, costs, and 
deterioration rates.  

II. Carbon emissions costs should be factored into 
inventory management decisions to align business 
activities with sustainability goals. 

III. To deal effectively with shortages and keep some of 
their customers, they should implement partial 
backlogging policies. 

6.2 For Future Research 

I. Generalize the developed modeling framework to 
M-product systems involving coupled demands to 
investigate more practical scenarios of supply chain 
management. 

II. Examine dynamic pricing models together with 
environmental regulations to improve profitability 
and sustainability. 

III. Test metaheuristic techniques such as GA and PSO 
to improve the computational efficiency of large-
scale nonlinear inventory models. 

6.3 Conclusion 

A comprehensive and optimum inventory model for 
perishable items was developed, combining these models: 

I. Learning-dependent demand, 
II. Hybrid Uncertainty (stochastic & fuzzy), 

III. Partial backlogging, and 
IV. Carbon Emission-Aware Cost 

The developed model ensures reliable and environmentally 
responsible approaches to cost-effective inventory 
management. The application of example problems and 
sensitivity analyses shows how learning rate differences, 
deterioration rates, and costs of carbon emissions 
significantly affect the optimal results of inventory 
management. The study results demonstrate that 
sustainability can ensure cost efficiency in inventory 
management, considering both environmental and 
operational costs. The framework provides a strategic 
decision aid for managers and can form the basis for further 
development in even more complex scenarios. 
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