

Comparative dissolution study in different pH conditions of Bilastine Tablet

¹ Rana Ahmed, ²Md. Mazharul Islam, ³Mohammad Anisur Rahman Uzzal

¹ Department of Pharmacy, Lecturer, Dhaka International University, Badda - 1212, Dhaka, Bangladesh.

² Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar Dhaka-1212

³ Department of Pharmacy, Department of Pharmacy, Manarat International University, Gulshan 2, Dhaka-1212, Bangladesh.

Email: ¹ ranambstu14@gmail.com, ² mazharul.mi887@gmail.com, ³ anisur.uzzal@gmail.com

Accepted: 26.11.2025

Published: 26.12.2025

Page No: 74 – 79

DOI: 10.5281/zenodo.18113721

Abstract – The rate of drug release of a solid dosage form through different periods can be assessed using disintegrating studies. In this study, we aimed to compare 2 bilastine tablets available in Bangladeshi market. Three different buffer media are utilised, having pH 1.2, 4.5 and 6.8 respectively. The HPLC parameters are as follows: mobile phase, buffer: acetonitrile (pH 4.0), 6.5:3.5; column, Kromasil C18 (150 mm X 4.6 mm, and 5 μ m); detection at a wavelength of 207 nm with the temperature set at an oven temperature of 25°C and flow rate was kept at 1 mL/min using PDA detector. The similarity factor of the type a bilastine tablets (at pH 1.2) is 83.27 and for type B bilastine tablets (at pH 1.2), difference factor is 1.01. Both of these requirements are fulfilled by the USP standard. But in other conditions pH 4.6 and 6.8 not same. These result show that the dissolution profile of B category tablet is not suitable formulation further in vivo test is required for the justification the plasma profile level at different time interval.

Keywords – RP-HPLC, Dissolution, Bilastine, Similarity factor, Difference factor.

I. INTRODUCTION

Tablet is a most common form of solid dosage form. It has many advantages over the other dosage form like liquid or semisolid. The solid dosage form such as tablet, capsule form drug release depends on the formulation form of the dosage form and its physiochemical nature of the molecule [1]. The formulation can enhance the dissolution process by adding different types of excipient with the active pharmaceutical ingredients. When the drug product release from the drug product the next step is drug absorption. Lipophilic drugs are more bio permeability properties than the hydrophilic drugs. So there is BCS drug category that indicate the how any drug nature in the physical, chemical and the attributes with the body permeability [2]. The dissolution test ensures any drug how fast release from its dosage form. If the drug molecules release from the product than it easily has the chance to go its active site of action by absorption process. When the inventor company make a dosage form the other market company also make same tablet but there is needed to the bioequivalence study to approve the pharmaceutical guideline.

The dissolution profile is one of the major parameter to pass this approval. The difference factor f_1 and similarity factor f_2 result also needed for support this data. The difference factor (f_1) and the similarity factor (f_2) are used to compare the dissolution profiles of a test formulation with that of a

standard product [3]. These factors help to detect whether two dissolution curves are sufficiently close to one another, which is important in dosage form development and regulatory submissions [4]. The percentage of inaccuracy between the two profiles at each time point is measured by the difference factor (f_1). This indicates how different the test and standard products are in terms of the quantity of medication dissolved. According to previous research [5], a low f_1 number (between 0 and 15) suggests that the two medication profiles are quite similar. The medication formulations could not be comparable if the f_1 value is high, as it indicates a larger variance. Both profiles are comparable and may be thought of as interchangeable if the f_2 value is in the 50–100 range. A substantial change in the dissolving behavior of the dosage form is indicated by values below 50 [6].

Anxieties are often treated with bilastine, a second-generation antihistamine [7]. Allergic reactions are alleviated because it inhibits peripheral H1-histamine receptors. Patients requiring alertness for everyday tasks may find bilastine useful since it has less penetration across the blood-brain barrier and considerably fewer effects on the central nervous system compared to first-generation antihistamines. After being taken orally, the medication is absorbed quickly and reaches its peak plasma concentrations in about an hour to two hours [8].

Bilastine has a relatively long half-life, allowing once-daily dosing without significant accumulation. It has a limited hepatic metabolism and a low potential for interactions with other drugs. These characteristics make it a preferable option for individuals with hepatic impairment or those receiving multiple medications. Clinically, bilastine is indicated for the treatment of seasonal and perennial allergic rhinitis as well as chronic spontaneous urticaria. Its efficacy in relieving nasal congestion, itching, and skin wheals has been well documented. The medication is generally well tolerated, with adverse effects such as headache or mild drowsiness occurring rarely [9].

II. METHODS AND MATERIALS

2.1 Materials information

Bilastine 20 mg tablet of A category pharmaceutical and B category pharmaceutical were sold from the local market of Bangladesh. Where A is from the top ten company of Bangladesh and B is in the from twenty to thirty ranking company. The chemicals from Merck, Germany, included acetonitrile, formic acid, triethylamine, hydrochloric acid, sodium acetate trihydrate, acetic acid, sodium hydroxide, and potassium dihydrogen phosphate.

Mix 8.5 mL of hydrochloric acid with 500 mL of filtered water, and then add 1000 mL to make the dissolution medium (0.1 N HCl pH 1.2).

The dissolving agent, an acetate buffer with a pH of 4.5, is prepared by mixing 2.99 g of sodium acetate trihydrate with 14 mL of acetic acid to a final volume of 1000 mL.

Mix 6.8 grams of potassium dihydrogen phosphate with 0.896 grams of sodium hydroxide in up to 1000 milliliters of water to make the dissolution media (phosphate buffer pH 6.8).

The mobile phase consisted of a 65:35 (v/v) mixture of buffer acetonitrile and other components. Pass through a 0.45 μ membrane filter for filtration.

Various dissolving media were used as diluents to create a diluted solution.

2.2 Commonly used methods of readiness

Volumetric flask with 100 mL of Bilastine working standard containing 42 mg. Stir in 40 mL of dissolving medium and shake well to dissolve. Then, sonicate for 10 minutes with 0.1 N HCl and 60 minutes with acetate and phosphate buffers at pH 4.5 and 6.8, respectively, while shaking in between. Gradually add the dissolving agent and stir until well combined. Fill a clean 100 mL volumetric flask to capacity with dissolving media, then transfer 5 mL of this solution and stir well. Pass the sample through a 0.45 μ -disc filter according to references [10,11,12].

The Auto sampler and PDA detector are part of the SHIMADZU Prominence HPLC system. Volume of 900 mL using various dissolving media and the USP-II device (paddle). With a temperature of $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ and a stirring speed of 50 rpm. The intervals of 5, 10, 15, 20, 30, and 45 minutes follow. Kromasil C18, measuring 4.6 mm x 150 mm and 5 μm , was used as the column for the technique. At 1.0 mL/min, the flow rate was calibrated. A volume of 20 mL was injected using a wavelength of 207 nm as chosen for the procedure. The column oven did not have a set temperature.

III. RESULTS

TABLE-1: CUMULATIVE PERCENT RELEASE TABLET OF A CATEGORY PHARMACEUTICAL IN 0.1 N HCL PH 1.2

Table t no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	97	98	99	99	101	97	95
2	99	99	99	99	100	97	94
3	97	99	99	99	99	97	94
4	99	99	100	99	100	97	95
5	99	99	100	99	101	97	95
6	99	100	99	100	101	98	96
7	99	100	100	100	101	98	96
8	99	100	100	100	101	99	96
9	99	100	100	99	100	97	96
10	100	100	95	99	100	98	96
11	100	100	100	100	101	99	96
12	100	100	101	100	101	99	96
Mean	99	100	100	100	100	98	96
STDEV	1.00	0.68	1.59	0.51	0.67	0.87	0.79
RSD (%)	1.006	0.678	1.597	0.515	0.674	0.882	0.829

TABLE-2: CUMULATIVE PERCENT RELEASE TABLET OF B CATEGORY PHARMACEUTICAL IN 0.1 N HCL PH 1.2

Table t no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	98	100	99	98	98	97	94
2	97	98	97	97	97	96	95
3	103	99	99	99	99	97	96
4	100	97	97	96	95	95	95
5	101	99	99	98	97	96	93
6	99	101	100	100	101	98	93
7	101	99	99	97	98	97	96
8	104	101	101	100	98	97	97
9	100	99	102	101	100	98	95
10	99	103	96	100	99	98	98
11	99	103	103	102	102	97	95
12	99	101	99	98	98	99	96
Mean	100	100	100	98	98	97	95
STDEV	2.00	1.86	2.11	1.80	1.88	1.08	1.48
RSD (%)	2.000	1.859	2.119	1.831	1.920	1.112	1.556

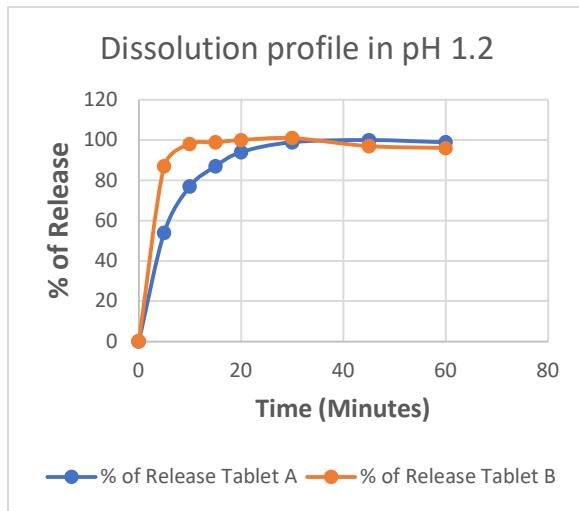


Figure1: Comparative dissolution profile in pH 1.2

TABLE-3: CUMULATIVE PERCENT RELEASE TABLET OF A CATEGORY PHARMACEUTICAL IN ACETATE BUFFER PH 4.5

Tablet no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	68	88	98	100	101	99	97
2	75	94	97	100	101	99	97
3	69	89	100	101	101	100	98
4	76	95	100	102	102	100	99
5	74	95	100	101	102	100	98
6	73	94	99	100	101	99	96
7	78	95	99	100	101	98	97
8	79	94	99	99	100	98	97
9	77	94	99	100	101	100	99
10	78	95	96	101	103	101	98
11	80	95	98	100	100	98	98
12	80	94	99	99	100	98	88
Mean	76	93	98	100	101	99	97
STD EV	3.99	2.39	1.18	0.87	0.90	1.03	2.92
RSD (%)	5.24	2.57	1.19	0.86	0.89	1.03	3.00
	7	0	9	5	1	5	5

TABLE-4: CUMULATIVE PERCENT RELEASE TABLET OF B CATEGORY PHARMACEUTICAL IN ACETATE BUFFER PH 4.5

Tablet no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	93	99	100	99	100	98	96
2	95	98	98	98	99	96	93
3	94	99	99	99	100	97	94
4	95	98	97	97	97	96	94
5	97	99	99	98	99	97	93
6	101	101	101	100	101	98	93
7	98	100	100	99	100	96	96
8	101	103	102	101	102	99	97
9	99	102	101	99	102	99	97

Tablet no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
10	100	102	96	101	102	99	97
11	101	102	102	102	101	99	97
12	104	101	101	101	102	99	96
Mean	98	101	100	100	100	98	95
STD EV	3.41	1.74	1.99	1.51	1.56	1.29	1.71
RSD (%)	3.47	1.73	1.98	1.50	1.56	1.31	1.79
	6	3	6	8	4	2	3

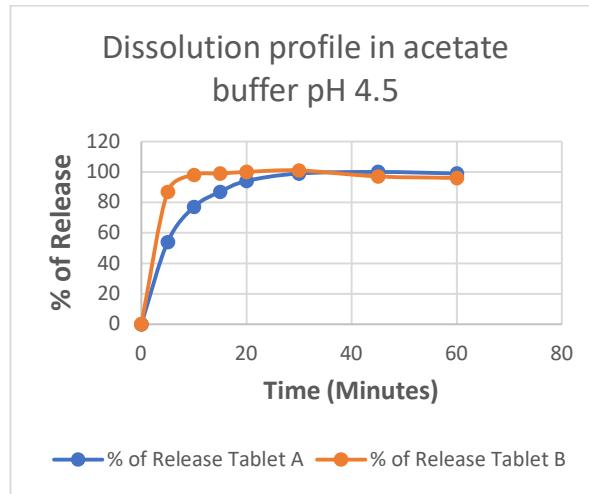


Figure 2: Comparative dissolution profile in pH 4.5

TABLE-5: CUMULATIVE PERCENT RELEASE TABLET OF A CATEGORY PHARMACEUTICAL IN PHOSPHATE BUFFER PH 6.8

Tablet no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	65	76	88	95	98	100	100
2	52	78	89	94	99	99	99
3	53	76	88	93	98	100	99
4	53	76	88	93	99	101	98
5	50	76	87	93	100	100	98
6	49	78	87	94	100	101	98
7	54	78	85	93	100	101	100
8	55	76	88	94	98	99	100
9	55	76	87	95	100	100	99
10	55	79	87	94	99	100	100
11	56	76	89	94	99	101	99
12	56	75	88	94	99	101	99
Mean	54	77	87	94	99	100	99
STD EV	4.01	1.22	1.08	0.72	0.79	0.75	0.79
RSD (%)	7.427	1.588	1.233	0.767	0.802	0.755	0.801

TABLE-6: CUMULATIVE PERCENT RELEASE TABLET OF B CATEGORY PHARMACEUTICAL IN PHOSPHATE BUFFER pH 6.8

Tablet no	5 mins	10 mins	15 mins	20 mins	30 mins	45 mins	60 mins
1	81	98	100	100	101	97	96
2	85	97	99	100	100	97	94
3	82	98	100	101	101	97	95
4	85	97	99	100	100	96	94
5	88	99	101	102	102	96	93
6	89	97	99	100	104	98	93
7	89	100	102	103	100	100	97
8	88	97	98	99	98	97	98
9	88	96	98	99	99	95	97
10	91	98	95	100	99	95	97
11	89	96	98	99	100	96	98
12	92	98	99	100	100	97	97
Mean	87	98	99	100	101	97	96
STDE V	3.36	1.16	1.77	1.22	1.56	1.36	1.86
RSD (%)	3.86	1.18	1.78	1.21	1.54	1.39	1.94
	3	9	9	0	8	7	3

Dissolution profile in phosphate buffer pH 6.8

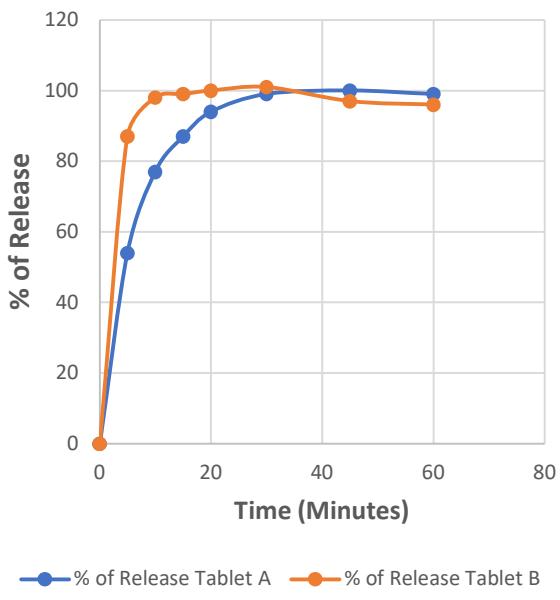


Figure 3: Comparative dissolution profile in pH 6.8

The dissolution profile data were also compared mathematically using the similarity factor f_2 and difference factor f_1 , which is calculated by the following equation.

$$f_2 = 50 \times \log \left\{ \left[1 + \left(\frac{1}{n} \right) \sum_{t=1}^n (R_t - T_t)^2 \right]^{-0.5} \times 100 \right\}$$

$$f_1 = \left\{ \left[\sum_{t=1}^n |R_t - T_t| \right] / \left[\sum_{t=1}^n R_t \right] \right\} \times 100$$

TABLE-7: SIMILARITY FACTOR f_2 AND DIFFERENCE FACTOR f_1 FOR DISSOLUTION MEDIUM OF 0.1 N HCl

Time (min)	R_t (Tablet A)	T_t (Tablet)	$(R_t - T_t)$	$(R_t - T_t)^2$
5	99	100	1	1
10	100	100	0	0
15	100	100	0	0
20	100	98	2	4
30	100	98	2	4
45	98	97	1	1
60	96	95	1	1
Sum $(R_t - T_t)$				7
Sum $(R_t - T_t)^2$				11
Sum R_t				693
Similarity factor f_2				83.27
Difference factor f_1				1.01

TABLE-8: SIMILARITY FACTOR f_2 AND DIFFERENCE FACTOR f_1 FOR DISSOLUTION MEDIUM OF ACETATE BUFFER pH 4.5

Time (min)	R_t (Tablet A)	T_t (Tablet B)	$(R_t - T_t)$	$(R_t - T_t)^2$
5	76	98	22	484
10	93	101	8	64
15	98	100	2	4
20	100	100	0	0
30	101	100	1	1
45	99	98	1	1
60	97	95	2	4
Sum $(R_t - T_t)$				36
Sum $(R_t - T_t)^2$				558
Sum R_t				664
Similarity factor f_2				43.20
Difference factor f_1				5.42

TABLE-9: SIMILARITY FACTOR F2 AND DIFFERENCE FACTOR F1 FOR DISSOLUTION MEDIUM OF PHOSPHATE BUFFER PH 6.8

Time (min)	R _t (Tablet A)	T _t (Tablet B)	(R _t - T _t)	(R _t - T _t) ²
5	54	87	33	1089
10	77	98	21	441
15	87	99	12	144
20	94	100	6	36
30	99	101	2	4
45	100	97	3	9
60	99	96	3	9
Sum (R _t - T _t)				80
Sum (R _t - T _t) ²				1732
Sum R _t				610
Similarity factor f2				30.95
Difference factor f1				13.11

Medium (50 rpm)	Difference factor f1	Similarity factor f2
pH 1.2	1.01	83.27
pH 4.6	5.42	43.20
pH 6.8	13.11	30.95

IV. DISCUSSIONS

The dissolution study of two local marketed Bangladeshi pharmaceutical products, identified as Category A and Category B, show a notable difference in their release profiles across three dissolution media. In 0.1 N HCl (pH 1.2), both products exhibited similar rapid and complete drug release, with mean values approaching 100% within the first 15 minutes. It indicates the efficient disintegration and dissolution for both formulations under acidic conditions. The calculated similarity factor (f2 = 83.27) and difference factor (f1 = 1.01) confirm that the profiles are highly comparable, meeting regulatory criteria for product equivalence information.

In acetate buffer (pH 4.5), distinct variations are observed. Category A tablet displayed a slower initial release,

particularly at the 5-minute interval, whereas Category B dissolved more rapidly and consistently over time. These differences are reflected in the lower similarity factor (f2 = 43.20), which falls below the acceptable threshold of 50, indicating a lack of profile similarity. On the other hand, the difference factor (f1 = 5.42) remains within the acceptable limit, suggesting moderate yet noteworthy deviation in the two formulations.

A major disparity was observed in phosphate buffer (pH 6.8). The similarity factor (f2 = 30.95) and difference factor (f1 = 13.11) confirm significant differences between the two formulations in this medium. These findings imply that formulation variables such as excipient uses that influencing dissolution behavior at neutral pH.

V. CONCLUSION:

The comparative dissolution study reveals that the two Bangladeshi local marketed products perform similarly show in only under acidic conditions. In 0.1 N HCl (pH 1.2), both tablet category A and category B showed rapid and complete drug release, supported by an acceptable similarity factor and minimal difference. However, in acetate buffer (pH 4.5) and phosphate buffer (pH 6.8), notable discrepancies has been observed. Category B tablet consistently exhibited faster dissolution, while category A released the drug more slowly. The low f2 values in these media confirm the lack of profile similarity in dosage formulation. Finally, the two type tablet formulations are comparable in gastric conditions but differ significantly at higher pH conditions.

REFERENCES

- [1]. Davies P. Oral solid dosage forms. Pharmaceutical preformulation and formulation. 2016 Apr 19:379-442.
- [2]. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs. The AAPS journal. 2009 Dec;11(4):740-6.
- [3]. Chilistone S, Hardman JG. Factors affecting drug absorption and distribution. Anaesthesia & Intensive Care Medicine. 2017 Jul 1;18(7):335-9.
- [4]. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Advanced drug delivery reviews. 2001 Mar 1;46(1-3):75-87.
- [5]. Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. European Journal of Pharmaceutical Sciences. 2015 Jan 23;66:163-72.

- [6]. Kawatani T. Topic difference factor extraction between two document sets and its application to text categorization. InProceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval 2002 Aug 11 (pp. 137-144).
- [7]. Ridolo E, Montagni M, Bonzano L, Incorvaia C, Canonica GW. Bilastine: new insight into antihistamine treatment. Clinical and molecular allergy. 2015 Apr 15;13(1):1.
- [8]. Church MK, Tiongco-Recto M, Ridolo E, Novák Z. Bilastine: a lifetime companion for the treatment of allergies. Current Medical Research and Opinion. 2020 Mar 3;36(3):445-54.
- [9]. Bachert C, Kuna P, Sanquer F, Ivan P, Dimitrov V, Gorina MM, Van De Heyning P, Loureiro A, Bilastine International Working Group. Comparison of the efficacy and safety of bilastine 20 mg vs desloratadine 5 mg in seasonal allergic rhinitis patients. Allergy. 2009 Jan;64(1):158-65.
- [10]. Ouarezki R, Guermouche S, Guermouche MH. Degradation kinetics of Bilastine determined by RP-HPLC method and identification of its degradation product in oxidative condition. Chemical Papers. 2020 Apr;74(4):1133-42.
- [11]. Terzić J, Popović I, Stajić A, Tumpa A, Jančić-Stojanović B. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method. Journal of pharmaceutical and biomedical analysis. 2016 Jun 5;125:385-93.
- [12]. Roshdy A, Salam RA, Hadad G, Belal F, Elmansi H. Green quality by design HPLC approach for the simultaneous determination of Bilastine and Montelukast. BMC chemistry. 2023 May 2;17(1):43.